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DYNAMICAL BIFURCATION OF THE ONE DIMENSIONAL

MODIFIED SWIFT-HOHENBERG EQUATION

Yuncherl Choi

Abstract. In this paper, we study the dynamical bifurcation of the mod-
ified Swift-Hohenberg equation on a periodic interval as the system con-
trol parameter crosses through a critical number. This critical number
depends on the period. We show that there happens the pitchfork bifur-
cation under the spatially even periodic condition. We also prove that
in the general periodic condition the equation bifurcates to an attractor
which is homeomorphic to a circle and consists of steady states solutions.

1. Introduction

The formation of patterns in non-equilibrium systems is closely related to
the instability ([9]) and the bifurcation analysis plays an important role in
understanding the instability. Indeed, the instability arises when stable states
are driven into unstable states during phases transition. As a control parameter
related to the instability passes through critical values, the trivial state loses
its stability and bifurcates to nontrivial states which form patterns. Then
the dynamics of the system after the threshold of bifurcation is completely
determined by its behavior on the center manifold. In particular, Ma and
Wang showed in [13] that the system bifurcates to a nontrivial attractor on the
center manifold which determines the final patterns of the system.

The Swift-Hohenberg equation is a widely accepted model in the study of the
formation of patterns [1, 12]. It was derived in [18] as an approximate model for
the Rayleigh-Bénard convection describing the pattern formation in layer fluids
between horizontal plates. It has attracted a lot of interest in various areas of
application regarding pattern formations such as Taylor-Couette flow and lasers
[5]. In particular, there has been much efforts on the bifurcation analysis as a
way of understanding pattern formations. See [4, 8, 10, 11, 14, 15, 19, 20] for
recent development in this direction.
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In this paper, as a variation of the Swift-Hohenberg equation, we are inter-
ested in a one dimensional modified Swift-Hohenberg equation (MSHE):

(1.1) ut = αu− (1 + ∂xx)
2u+ µu2x − u3.

Here, u : R × [0,∞) → R, α ∈ R is a control parameter related to the driv-
ing force of the system, and µ ∈ R, reminiscent of the Kuramoto-Sivashinsky
equation, is a constant causing stable hexagonal patterns. The MSHE arises
in the study of various pattern formation phenomena involving some kind of
phase turbulence or phase transition ([6]). If µ = 0, then (1.1) corresponds to
the usual Swift-Hohenberg equation.

In this paper, we consider the MSHE (1.1) under the periodic boundary
condition on Ω = [−λ, λ], i.e., u(−λ, t) = u(λ, t) for all t ≥ 0 and some λ > 0.
For the functional setting of periodic MSHE, let

H =
{

u ∈ L2(Ω;R) : u(−λ) = u(λ)
}

,

H4
per(Ω;R) =

{

u ∈ H4(Ω;R) :
∂ju

∂xj
(−λ) = ∂ju

∂xj
(λ) for j = 0, 1, 2, 3

}

,

H1 = H4
per(Ω;R) ∩H.

On the other hand, it is easy to see that the MSHE (1.1) is invariant under the
even periodic condition. So we define

H̃ = H ∩
{

u ∈ L2(Ω;R) : u(−x) = u(x), x ∈ [0, λ]
}

,

H̃1 = H̃ ∩H1.

We formulate (1.1) in an abstract equation

(1.2)







du

dt
= Lαu+G(u),

u(0) = u0,

by setting Lαu = −Au+Bαu, and

A =
( ∂2

∂x2
+ I

)2

: H1 → H (H̃1 → H̃, resp.),

Bα = αI : H1 → H (H̃1 → H̃, resp.).

We also define the nonlinear operator G(u) = G2(u, u) +G3(u, u, u), where

G2(u, v) = µuxvx, and G3(u, v, w) = −uvw.

It is easy to check that A, Bα, G : H1 → H (H̃1 → H̃ , resp.) are well defined.
The global well-posedness was established in [16]. Moreover, it was proved in
[16, 17] that global attractors exist in the class Hk

per for any k ≥ 2. In this
paper, we carry out the bifurcation analysis of the one dimensional problem
(1.1) in detail by using the center manifold reduction.
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Let us investigate the eigenvalues of the operator Lα on H (H̃ , resp.). By a
simple computation, one can find that Lα has an eigenvalue sequence

(1.3) βn(α) = α− αn, αn =
[

1−
(nπ

λ

)2]2

, n = 0, 1, 2, . . .

with the corresponding eigenvectors

φ0(x) =
1√
2
, φn(x) = cos

nπx

λ
, ψn(x) = sin

nπx

λ

for n ≥ 1 (in H̃ , φ0 and φn(n ≥ 1) are only eigenvectors). For our convenience,
we denote ψ0(x) = 0. We note that the eigenvectors are orthogonal to each
other and

‖φn‖H = ‖ψm‖H =
√
λ (‖φn‖H̃ =

√
λ, resp.)

for all n ≥ 0 and m ≥ 1. Since αn is a quadratic function of (nπ/λ)2, each
N ∈ N has two choices: either

(1.4) αn > αN ∀ n 6= N,

or

(1.5) αn > αN = αN+1 ∀ n 6= N, N + 1.

In this paper, we deal with only the first choice. The latter case will be con-
sidered in a forthcoming paper.

The main results of this paper are to verify the dynamical bifurcation of the
MSHE (1.1) defined in H̃ and H . We state the main theorems as follows.

Theorem 1.1. Suppose that (1.4) holds true for some N ∈ N ∪ {0}.
(i) If N = 0, then as α passes through α0 = 1, MSHE (1.1) defined in H̃

bifurcates to two steady points

u = ±
√

2(α− 1)φN + o(
√
α− 1).

(ii) Suppose that N > 0 and λ <
√

5/2Nπ. Then, as α passes through αN ,

MSHE (1.1) defined in H̃ bifurcates to two steady points

u± = ±ραφN + o(α − αN ),

where ρα = ρα(N,µ) > 0 and

ρ2α =
12(2λ2 − 5N2π2)βN

9(2λ2 − 5N2π2)− 4µ2N2π2
+ o(|α− αN |).

Theorem 1.2. Suppose that (1.4) holds true for some N ∈ N ∪ {0}.
(i) If N = 0, then as α passes through α0 = 1, MSHE (1.1) defined in H

bifurcates to two steady points

u = ±
√

2(α− 1)φN + o(
√
α− 1).
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(ii) Suppose that N > 0 and λ <
√

5/2Nπ. Then, as α passes through

αN , MSHE (1.1) defined in H bifurcates to an attractor AN (α) which
is homeomorphic to S1 and consists of the steady solution given by

{

u = w1φN + w2ψN + o(α − αN ) : w2
1 + w2

2 = ρ2α
}

.

The constraint λ <
√

5/2Nπ in Theorems 1.1 and 1.2 is natural. As we shall
see in the proof of both theorems, this comes from the inequality α2N > αN .
This is always true under the condition (1.4). We refer to the attractor AN (α)
in Theorem 1.2 as a S1-attractor because it is homeomorphic to S1.

It is quite interesting to compare our results with the dynamical bifurcation
of two other similar types of phase transition equations: the Swift-Hohenberg
equation (SHE):

ut = αu− (1 + ∂xx)
2u− u3

and the generalized Swift-Hohenberg equation (GSHE):

ut = αu− (1 + ∂xx)
2u+ µu2 − u3.

The MSHE, the SHE, and the GSHE share the same linear part and the only
difference of dynamics arises from the nonlinear effect. As in the case of the
MSHE, it is known from [4, 8, 11, 20] that under the condition (1.4) and the
periodic condition, the SHE and the GSHE bifurcate from the trivial states to
S1-attractors ÃN (α) and ÂN (α), respectively. However, there are big differ-

ences in the structures of AN (α), ÃN (α), and ÂN (α). First, ÃN (α) consists

of four static solutions and their connecting orbits. Two of the static solutions
are stable points and the others are saddle points. On the other hand, ÂN (α)
consists of static solutions and the direction of the bifurcation depends on the

value of µ. Indeed, there is a number H(N, λ, µ) such that if H(N, λ, µ) > 0,
then the bifurcation is subcritical, i.e., the GSHE bifurcates as α passes through
αN to the right. If H(N, λ, µ) < 0, then the bifurcation is supercritical, i.e.,
the GSHE bifurcates as α passes through αN to the left. In our results for the
MSHE, the bifurcated attractor AN (α) consists of static solutions but there is
no dependence on µ for the direction of the bifurcation.

We prove the above theorems in the next two sections. The main ingredient
of proof is the center manifold reduction. If α stays near the critical bifurcation
number αN , the long time dynamics of the solutions are completely determined
from the center manifold about the corresponding eigenspace. Hence, the re-
duction of MSHE on the center manifold is the key process for the study on
bifurcation. In general, it is very difficult to calculate the center manifold func-
tion. Recently, Ma and Wang derived a rather simple formula to compute it
[13]. We will use this formula to derive the reduced equations on the center
manifold.
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2. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. We assume that α is slightly bigger
than αN , namely,

βN(α) = o(α − αN ).(2.6)

Let Ẽ1 = span{φN} and Ẽ2 = Ẽ⊥
1 in H̃ . Let P̃j : H̃ → Ẽj be the canonical

projection and L̃α
j = Lα|Ẽj

for j = 1, 2. For u ∈ H̃, we write u =
∑∞

n=0 ynφn.

If Φ̃ : Ẽ1 → Ẽ2 is a center manifold function and v = P̃1u = yNφN , then the
reduced equation of (1.1) on the center manifold is

(2.7)
dv

dt
= L̃α

1 v + P̃1G
(

yNφN + Φ̃(yNφN )
)

.

By taking the inner product of (2.7) with φN , we have the following:

(2.8)
dyN
dt

= βNyN + g(yN),

where

g(yN ) =
1

λ

〈

G2(yNφN + Φ̃(yNφN )), φN

〉

+
1

λ

〈

G3(yNφN + Φ̃(yNφN )), φN

〉

.

On the other hand, from Theorem 3.8 in [13], the center manifold function Φ̃
can be expressed as

(2.9)
Φ̃(yNφN ) = (−L̃α

2 )
−1P̃2G2(yNφN ) +O(|βN | · λ|yN |2) + o(λ|yN |2)

= (−L̃α
2 )

−1P̃2G2(yNφN ) + o(|yN |2),

where the last equality comes from (2.6). We divide the proof into two cases.

2.1. The case: N = 0

Since G2(y0φ0) = 0, it follows from (2.9) that Φ̃(y0φ0) = o(|y0|2). Then
〈

G2(y0φ0 + Φ̃(y0φ0)), φ0

〉

= o(|y0|3),
〈

G3(y0φ0 + Φ̃(y0φ0)), φ0

〉

= −
ˆ λ

−λ

[

y0φ0 + Φ̃(y0φ0)
]3 · φ0 dx

= −λ
2
y30 + o(|y0|3).

Therefore, (2.8) becomes

(2.10)
dy0
dt

= β0y0 −
1

2
y30 + o(|y0|3).

Hence, we obtain a pitchfork bifurcation as α passes through α0 = 1, which
gives two steady state solutions y0 = ±

√

2(α− 1) + o(
√
α− 1).
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2.2. The case: N ≥ 1

By direct computation, we have

G2(yNφN ) = µ(yNφN )2x

= µ
(

− Nπ

λ
yN sin

Nπx

λ

)2

= µ
(Nπ

λ

)2 y2N
2
(
√
2φ0 − φ2N ).

Hence, by (2.9) the center manifold function becomes

Φ̃(yNφN ) =
µ

2

(Nπ

λ

)2

y2N(−Lα
2 )

−1(
√
2φ0 − φ2N ) + o(|yN |2)

=
µ

2

(Nπ

λ

)2

y2N

(

−
√
2φ0
β0

+
φ2N
β2N

)

+ o(|yN |2).

Here, we used the fact that Lαφn = βnφn. Then

G2(yNφN + Φ̃(yNφN ))

= µ
{

yNφN +
µ

2

(Nπ

λ

)2

y2N

(

−
√
2φ0
β0

+
φ2N
β2N

)

+ o(|yN |2)
}2

x

= µ
{

− yN

(Nπ

λ

)

sin
Nπx

λ
− y2N

µ

2β2N

(Nπ

λ

)2(2Nπ

λ

)

sin
2Nπx

λ
+ o(|yN |2)

}2

= y2N
µN2π2

λ2
sin2

Nπx

λ
+ y3N

2µ2N4π4

λ4β2N
sin

Nπx

λ
sin

2Nπx

λ
+ o(|yN |3)

= y2N
µN2π2

λ2

√
2φ0 − φ2N

2
+ y3N

µ2N4π4

λ4β2N
(φN − φ3N ) + o(|yN |3).

As a consequence,

1

λ

〈

G2(yNφN + Φ̃(yNφN )), φN

〉

=
1

λ

ˆ λ

−λ

G2(yNφN + Φ̃(yNφN )) · φN dx

=
µ2N4π4

λ4β2N
y3N + o(|yN |3).

On the other hand,

G3(yNφN + Φ̃(yNφN ))

= −
{

yNφN +
µ

2

(Nπ

λ

)2

y2N

(

−
√
2φ0
β0

+
φ2N
β2N

)

+ o(|yN |2)
}3

= − y3N cos3
Nπx

λ
+ o(|yN |3)

= − y3N
3φN + φ3N

4
+ o(|yN |3),
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which yields that

1

λ

〈

G3(yNφN + Φ̃(yN )), φN

〉

=
1

λ

ˆ λ

−λ

G3(yNφN + Φ̃(yNφN )) · φN dx

= −3

4
y3N + o(|yN |3).

In the sequel, (2.8) becomes

(2.11)
dyN
dt

= βNyN − dNy
3
N + o(|yN |3),

where

(2.12) dN = dN (α, λ, µ) =
3

4
− µ2N4π4

λ4β2N
.

We note that (2.11) has two steady points yN = ±ρα with ρα > 0, where

(2.13) ρ2α =
βN
dN

=
4λ4β2NβN

3λ4β2N − 4µ2N4π4
.

It follows from (1.4) and (2.6) that

(2.14) β2N = αN − α2N + α− αN < 0

and hence ρα is well-defined. Moreover, since

(2.15)
αN − α2N =

(

1−
(Nπ

λ

)2
)2

−
(

1−
(2Nπ

λ

)2
)2

=
3N2π2

λ4
(2λ2 − 5N2π2),

we have a constraint for λ:

λ <

√

5

2
Nπ.

The formulas (2.14) and (2.15) also provide an exact form of (2.13) as

ρ2α =
12(2λ2 − 5N2π2)βN

9(2λ2 − 5N2π2)− 4µ2N2π2
− 16µ2λ4βN (α− αN )

(

9(2λ2 − 5N2π2)− 4µ2N2π2
)2

+ o(|α− αN |)

=
12(2λ2 − 5N2π2)βN

9(2λ2 − 5N2π2)− 4µ2N2π2
+ o(|α − αN |).

This completes the proof.
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3. Proof of Theorem 1.2

In this section, we prove Theorem 1.2. The case N = 0 is similar to that of
Theorem 1.1 and we omit the detail. Now let us assume that N ∈ N. As in the
proof of Theorem 1.1, the main ingredient is the center manifold reduction.

Let E1 = span{φN , ψN} for N ≥ 1 and E2 = E⊥
1 in H . Let Pj : H → Ej

be the canonical projection and Lα
j = Lα|Ej

for j = 1, 2. For u ∈ H , we write

u =

∞
∑

n=0

(ynφn + znψn).

If Φ : E1 → E2 is a center manifold function and v = P1u = yNφN + zNψN ,
then the reduced equation of (1.1) on the center manifold is

(3.16)
dv

dt
= Lα

1 v + P1G
(

yNφN + zNψN +Φ(yNφN + zNψN )
)

.

By taking the inner product of (3.16) with φN and ψN , we have the following:

(3.17)











dyN
dt

= βNyN + F1(yN , zN ),

dzN
dt

= βNzN + F2(yN , zN ).

Here,

F1(yN , zN) =
1

λ
〈G2(yNφN + zNψN +Φ(yNφN + zNψN )), φN 〉

+
1

λ
〈G3(yNφN + zNψN +Φ(yNφN + zNψN )), φN 〉

and

F2(yN , zN ) =
1

λ
〈G2(yNφN + zNψN +Φ(yNφN + zNψN )), ψN 〉

+
1

λ
〈G3(yNφN + zNψN +Φ(yNφN + zNψN )), ψN 〉 .

In the following, we compute F1 and F2.
First, we observe from Theorem 3.8 in [13], the center manifold function Φ

can be expressed as

(3.18)

Φ(yNφN + zNψN ) = (−Lα
2 )

−1P2G2(yNφN + zNψN )

+O
(

|βN | · λ(y2N + z2N)
)

+ o(λ(y2N + z2N ))

= (−Lα
2 )

−1P2G2(yNφN + zNψN ) + o((y2N + z2N)),

where the last equality comes from (2.6). By direct computation, we have

G2(yNφN + zNψN )

= µ(yNφN + zNψN )2x

= µ
(

− Nπ

λ
yN sin

Nπx

λ
+
Nπ

λ
zN cos

Nπx

λ

)2
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= µ
(Nπ

λ

)2[

y2N

√
2φ0 − φ2N

2
− yNzNψ2N + z2N

√
2φ0 + φ2N

2

]

= µ
(Nπ

λ

)2[
√
2(y2N + z2N)

2
φ0 −

y2N − z2N
2

φ2N − yNzNψ2N

]

.

Hence, by (3.18) the center manifold function becomes

Φ(yNφN + zNψN )

= − µ
(Nπ

λ

)2[
√
2(y2N + z2N)

2

φ0
β0

− y2N − z2N
2

φ2N
β2N

− yNzN
ψ2N

β2N

]

+ o(y2N + z2N ).

So, we obtain that

G2(yNφN + zNψN +Φ(yNφN + zNψN ))

= µ
(

yNφN + zNψN +Φ(yNφN + zNψN )
)2

x

= µ
{

− yN
Nπ

λ
ψN + zN

Nπ

λ
φN − 2µ

(Nπ

λ

)3[y2N − z2N
2β2N

ψ2N − yNzN
β2N

φ2N
]

+ o(y2N + z2N )
}2

= µ
{

y2N
(Nπ

λ

)2
ψ2
N + z2N

(Nπ

λ

)2
φ2N − 2yNzN

(Nπ

λ

)2
φNψN

+
2µ

β2N

(Nπ

λ

)4[

(y3N − yNz
2
N )ψNψ2N − 2y2NzNψNφ2N

− (y2NzN − z3N )φNψ2N + 2yNz
2
NφNφ2N

]

+ o(|yN |3 + |zN |3)
}

.

By elementary properties of the trigonometric functions, we obtain

G2(yNφN + zNψN +Φ(yNφN + zNψN ))

=
µN2π2

λ2

[

y2N

√
2φ0 − φ2N

2
+ z2N

√
2φ0 − φ2N

2
− yNzNψ2N

]

+
2µ2N4π4

λ4β2N

[

(y3N − yNz
2
N )
φN − φ3N

2
− y2NzN(−ψN + ψ3N )

− (y2NzN − z3N)
ψN + ψ3N

2
+ yNz

2
N (φN + φ3N )

]

+ o(|yN |3 + |zN |3)

=
µN2π2

λ2
[y2N + z2N√

2
φ0 −

y2N + z2N
2

φ2N − yNzNψ2N

]

+
µ2N4π4

λ4β2N

[

(y3N + yNz
2
N )φN − (y3N − 3yNz

2
N)φ3N

+ (y2NzN + z3N)ψN − (3y2NzN − z3N)ψ3N

]

+ o(|yN |3 + |zN |3).

As a consequence, we are led to

1

λ
〈G2(yNφN + zNψN +Φ(yNφN + zNψN )), φN 〉



1250 Y. CHOI

=
µ2N4π4

λ4β2N
(y3N + yNz

2
N ) + o(|yN |3 + |zN |3),

1

λ
〈G2(yNφN + zNψN +Φ(yNφN + zNψN )), ψN 〉

=
µ2N4π4

λ4β2N
(y2NzN + z3N ) + o(|yN |3 + |zN |3).

On the other hand,

G3(yNφN + zNψN +Φ(yNφN + zNψN ))

= −
(

yNφN + zNψN +Φ(yNφN + zNψN )
)3

= − y3Nφ
3
N − 3y2NzNφ

2
NψN − 3yNz

2
NφNψ

2
N − z3Nψ

3
N + o(|yN |3 + |zN |3)

= − y3N
3φN + φ3N

4
− 3y2NzN

ψN + ψ3N

4
− 3yNz

2
N

φN − φ3N
4

− z3N
3ψN − ψ3N

4

+ o(|yN |3 + |zN |3)

= − 1

4

[

3(y3N + yNz
2
N)φN + (y3N − 3yNz

2
N )φ3N + 3(y2NzN + z3N )ψN

+ (3y2NzN − z3N )ψ3N

]

+ o(|yN |3 + |zN |3),
which yields that

1

λ
〈G3(yNφN + zNψN +Φ(yNφN + zNψN )), φN 〉

= − 3

4
(y3N + yNz

2
N ) + o(|yN |3 + |zN |3),

1

λ
〈G3(yNφN + zNψN +Φ(yNφN + zNψN )), ψN 〉

= − 3

4
(y2NzN + z3N ) + o(|yN |3 + |zN |3).

In the sequel, (3.17) becomes

(3.19)
dy

dt
= βNy − F(y) + o(|y|3),

where y = (yN , zN ) and

F(y) = dN (y3N + yNz
2
N , y

2
NzN + z3N ).

Here, dN is the number defined by (2.12). Since β2N < 0, we obtain that
dN > 0. Furthermore, since

〈F(y),y〉 = dN (y2N + z2N )2 = dN |y|4,
we have the following:

dN |y|4 ≤ 〈F(y),y〉 ≤ 2dN |y|4.
This implies by Theorem 5.10 of [13] that (3.19) bifurcates from the trivial
solution to an attractor AN (α) as α passes through αN . Moreover, AN (α) is
homeomorphic to S1.
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We recall that the MSHE (1.1) is invariant under the even periodic condition.

We have seen that the MSHE bifurcates an attractor in H̃ consisting of two
steady solutions ±ραφN +o(α−αN). We also note that the MSHE is invariant
in H under the spatial translation. As a consequence, the static solution u =
ραφN +o(α−αN ) generates one parameter family of static solutions as follows:
for θ ∈ R,

ρα cos
(Nπ

λ
(x+ θ)

)

+ o(α − αN )

= ρα cos
Nπθ

λ
· cos Nπx

λ
+ ρα sin

Nπθ

λ
· cos Nπx

λ
+ o(α− αN )

= w1φN + w2ψN + o(α− αN ).

Since w2
1 + w2

2 = ρ2α, this set of static solutions form an invariant circle. It is
obvious that this circle is contained in the attractor AN (α). Since AN (α) is
already homeomorphic to S1, we may conclude that AN (α) consists of static
solutions. This finished the proof.
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