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SOME MONOMIAL SEQUENCES ARISING FROM GRAPHS

Maurizio Imbesi, Monica La Barbiera, and Zhongming Tang

Abstract. s-sequences and d-sequences are fundamental sequences in-
tensively studied in many fields of algebra. In this paper we are interested
in dealing with monomial sequences associated to graphs in order to es-
tablish conditions for which they are s-sequences and/or d-sequences.

1. Introduction

In this work we consider monomial sequences establishing conditions for
which they are s-sequences and d-sequences in order to deduce some properties
of the symmetric algebra of monomial ideals, in particular of some monomial
ideals arising from graphs.

In [2] the notion of d-sequence was firstly given by Huneke for the study of
Rees rings. In [1] the notion of s-sequence is employed to compute the invariants
of the symmetric algebra of finitely generated modules and it is proved that
any d-sequence is a strong s-sequence.

Some properties about monomial s-sequences are studied. In [1] it is given
a necessary and sufficient condition for monomial sequences of length three
to be s-sequences. Afterwards, in [6] it is shown a necessary and sufficient
condition for monomial squarefree sequences of length four, and in [5] a more
general statement for monomial sequences of any length related to forests. Our
aim is to find necessary and sufficient conditions for monomial sequences of
length greater than four to be s-sequences. Some results are obtained for edge
sequences associated to very important classes of graphs and components of
them.

The d-sequences have been intensively studied by many algebraists, the
monomial d-sequences are characterized in [6]. Our aim is to investigate the
notion of d-sequence for the monomial ideals arising from simple graphs in
order to compute standard algebraic invariants of their symmetric algebra in
terms of the corresponding invariants of special quotients of the polynomial
ring related to the graphs.
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The paper is organized as follows. Section 2 is devoted to discuss monomial
s-sequences. We introduce some classes of acyclic graphs for which, using
the theory of Gröbner bases, we prove conditions in order that their edge
ideals are generated by s-sequences. In Section 3 we deduce some properties
of the symmetric algebra of such graph ideals generated by d-sequences. More
precisely, we compute the following invariants of the symmetric algebra of such
path ideals generated by a d-sequence: the dimension, the multiplicity and the
Castelnuovo-Mumford regularity.

2. Monomial s-sequences associated to graphs

Main definitions and notations principally come from [4], [6] and [7].
Let G be a graph, V (G) and E(G) be the sets of its vertices and edges

respectively. G is said to be simple if, for all {vi, vj} ∈ E(G), it is vi 6= vj . G is
connected if it has no isolated subgraphs.

Let G be a graph with vertex set [n] = {v1, . . . , vn}. Let R = K[X1, . . . , Xn]
be the polynomial ring over a field K with one variable Xi for each vertex vi
and I(G) =

(

{XiXj | {vi, vj} ∈ E(G), i 6= j}
)

be the edge ideal associated to G
generated by degree two squarefree monomials of R.

Let’s recall the theory of s-sequences in order to apply it to some classes of
edge ideals.

Let M be a finitely generated module on a Noetherian ring R, and f1, . . . , ft
be the generators of M . Let (aij), for i = 1, . . . , t, j = 1, . . . , p, be the re-
lation matrix of M . Let SymR(M) be the symmetric algebra of M , then
SymR(M) = R[T1, . . . , Tt]/J , where R[T1, . . . , Tt] is a polynomial ring in the
variables T1, . . . , Tt and J the relation ideal, namely the ideal generated by
gj =

∑

i,j aijTi for i = 1, . . . , t, j = 1, . . . , p .
If we assign degree 1 to each variable Ti and degree 0 to the elements of R,

then J is a graded ideal and SymR(M) is a graded algebra on R.
Set S = R[T1, . . . , Tt] and let ≺ be a term order on the monomials of S. With

respect to it, if f =
∑

aαT
α, where Tα = Tα1

1 · · ·Tαt

t and α = (α1, . . . , αt) ∈
N

t, we put in≺(f) = aαT
α, where Tα is the largest monomial in f such that

aα 6= 0. So we can define the monomial ideal in≺(J) = ({in≺(f) | f ∈ J}).
For every i = 1, . . . , t, we set Mi−1 = Rf1+ · · ·+Rfi−1 and let Ii = Mi−1 :R

fi be the colon ideal. Since Mi/Mi−1 ≃ R/Ii, Ii is the annihilator of the cyclic
module R/Ii. Ii is called an annihilator ideal of the sequence f1, . . . , ft.

It is (I1T1, I2T2, . . . , ItTt) ⊆ in≺(J), and the two ideals coincide in degree 1.

Definition 2.1. The sequence f1, . . . , ft is said to be an s-sequence for M if

(I1T1, I2T2, . . . , ItTt) = in≺(J).

When I1 ⊆ I2 ⊆ · · · ⊆ It, f1, . . . , ft is said to be a strong s-sequence.

We can use the Gröbner bases theory to compute in≺(J). Let ≺ be any term
order on S = K[X1, . . . , Xn, T1, . . . , Tt] with Xi ≺ Tj for all i, j. Then for any
Gröbner basis B for J ⊂ S with respect to ≺, we have in≺(J) = ({in≺(f) | f ∈
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B}). If the elements of B are linear in the Ti, then f1, . . . , ft is an s-sequence
for M .

Let M = I = (f1, . . . , ft) be a monomial ideal of R. Set fij =
fi

[fi,fj ]
, i 6= j,

where [fi, fj ] is the greatest common divisor of the monomials fi and fj . J is
generated by gij = fijTj − fjiTi for 1 ≤ i < j ≤ t. The monomial sequence
f1, . . . , ft is an s-sequence if and only if gij is a Gröbner basis for J with respect
to the term order ≺.

Notice that the annihilator ideals of the monomial sequence f1, . . . , ft are
the ideals Ii = (f1i, f2i, . . . , fi−1,i) for i = 1, . . . , t (see [1]).

Remark 2.1 ([1, Lemma 1.4]). From the theory of Gröbner bases, if f1, . . . , ft
is a monomial s-sequence with respect to some admissible term order ≺, then
f1, . . . , ft is an s-sequence for any other admissible term order.

In [1, Proposition 1.7], it is shown that a monomial sequence f1, . . . , ft is an
s-sequence if [fij , fkl] = 1 for all i, j, k, l ∈ {1, , . . . , t} with i < j, k < l, i 6= k,
and j 6= l.

Moreover, for monomial sequences of length 3, the above condition is neces-
sary, see [1, Proposition 1.8].

Afterwards, in [6, Theorem 4.1], it was proved that a monomial sequence
f1, . . . , ft is an s-sequence if [fij , fkl] = 1 or fjl[fij , fkl] | fklfji, or in case i > k,
fki[fij , fkl] | fklfji for any i < j, k < l, j < l and k 6= i.

Furthermore, for monomial squarefree sequences of length 4, the above con-
dition is also necessary, see [6, Proposition 4.7].

Using [1, Proposition 1.7], and [6, Theorem 4.1], we introduce some classes
of graphs G for which necessary and sufficient conditions hold in the case that
their edge ideals are generated by s-sequences of length t > 4.

Theorem 2.1. Let G be the connected acyclic graph whose edge ideal I(G) is

generated by f1 = X1Xn, f2 = X2Xn, . . . , fn−1 = Xn−1Xn in R = K[X1, . . .,
Xn] for n − 1 = t. Then f1, f2, . . . , fn−1 is an s-sequence if and only if

[fij , fkl] = 1 for all i < j, k < l, i 6= k and j 6= l, i, j, k, l ∈ {1, . . . , n− 1}.

Proof. Let f1 = X1Xn, f2 = X2Xn, . . . , fn−1 = Xn−1Xn be an s-sequence.
We show that [fij , fkl] = 1 for all i < j, k < l, i 6= k and j 6= l, i, j, k, l ∈
{1, . . . , n− 1}. The s-sequence property implies that B = {gij = fijTj − fjiTi}
for 1 ≤ i < j ≤ n− 1 is a Gröbner basis of J . Hence the S-pairs

S(gij , gkl) =
fijflk
[fij , fkl]

TjTk −
fklfj i
[fij , fkl]

TiTl

with i, j, k, l ∈ {1, . . . , n − 1}, i < j, i < k < l, have a standard expression
with respect to B with remainder 0. Note that, to get a standard expression of
S(gij , gkl) is equivalent to find some gst ∈ B whose initial term divides the ini-
tial term of S(gij , gkl) and substitute a multiple of gst such that the remaindered
polynomial has a smaller initial term and so on up to the remainder is 0. By [4,
Theorem 3.1], one has the standard expression S(gij , gkl) = gijTl−gklTj. Then
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there exists gij ∈ B whose initial term divides the initial term of S(gij , gkl).

It follows that fijTj

∣

∣

∣

fijflk
[fij ,fkl]

TjTk, then fij

∣

∣

∣

fijflk
[fij ,fkl]

and [fij , fkl] | flk. Being

[[fij , fkl], fkl] = 1, one has [fij , fkl] = 1.
Conversely, we have [fij , fkl] = [Xi, Xk] = 1 for all i < j, k < l, i 6= k and

j 6= l, i, j, k, l ∈ {1, . . . , n − 1}. Hence, by [1, Proposition 1.7], one can state
that I(G) is generated by an s-sequence (see also [3, Theorem 2.2]). �

Theorem 2.2. Let G be the connected acyclic graph whose edge ideal I(G) is

generated by f1 = X1X2, f2 = X2X3, . . . , fn−1 = Xn−1Xn in R = K[X1, . . .,
Xn], for n − 1 = t. Then f1, f2, . . . , fn−1 is an s-sequence if and only if

[fij , fkl] = 1 or fjl[fij , fkl] | fklfji, or fki[fij , fkl] | fklfji in case i > k for any

i < j, k < l, j < l and i 6=k, i, j, k, l ∈ {1, . . . , n−1}.

Proof. Let f1 = X1X2, f2 = X2X3, . . ., fn−1 = Xn−1Xn be an s-sequence.

We show that [fij , fkl] = 1 or
fklfji
[fij ,fkl]

is divided by fjl, or by fki in case i > k,

for any i < j, k < l, j < l and i 6= k, i, j, k, l ∈ {1, . . . , n− 1}. The s-sequence
property implies that B = {gij = fijTj−fjiTi | 1 ≤ i < j ≤ n−1} is a Gröbner
basis of J . Hence the S-pairs

S(gij , gkl) =
fijflk
[fij , fkl]

TjTk −
fklfji

[fij , fkl]
TiTl

with i, j, k, l ∈ {1, . . . , n − 1}, i < j, i < k < l, have a standard expression
with respect to B with remainder 0. First note that [fij , fk,l] = 1 for j = k,
because f1, . . . , fn−1 are squarefree monomials. Moreover, by the structure of
the monomials f1, . . . , fn−1, one has [fij , fkl] = 1 for j 6= k and i 6= k − 1.
Otherwise, by [4, Theorem 3.1], one has the following standard expression:

S(gij , gkl) = [fji, flk]

(

fjl
[fik, fjl]

gikTl −
fik

[fik, fjl]
gjlTk

)

.

Then there exists gjl ∈ B, or, in case i > k, gik ∈ B, whose initial term divides

the initial term of S(gij , gkl). So, it follows that fjl

∣

∣

∣

fklfji
[fij ,fkl]

or, in case i>k,

fki

∣

∣

∣

fklfji
[fij ,fkl]

. The thesis follows.

Conversely, because f1, . . . , fn−1 are squarefree monomials, [fij , fjl] = 1
and, by the structure of these monomials, one has [fij , fkl] = 1 for j 6= k and
k 6= i + 1. Otherwise one has [fij , fkl] = Xi for i > k, and [fij , fkl] = Xk for
i < k. Then for i > k: fjl[fij , fkl]|fklfji, in fact XjXj+1Xi|XiXkXjXj+1, or
fki[fij , fkl]|fklfji, in fact XkXi|XiXkfji. For i < k: fjl[fij , fkl]|fklfji, in fact
XjXj+1Xk|XiXkXjXj+1. Hence, by [6, Theorem 4.1], one can state that I(G)
is generated by an s-sequence (see also [3, Theorem 2.2]). �

3. Monomial d-sequences and symmetric algebras of graph ideals

The concept of d-sequence was firstly given by Huneke [2] for the study of
Rees rings. We are interested in monomial d-sequences.
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Let R be a Noetherian ring, f1, . . . , ft ∈ R be a monomial sequence. We say
that f1, . . . , ft is minimal if it is a minimal system of generators of the ideal
I = (f1, . . . , ft), which is equivalent to fi does not divide fj for all i 6= j.

Definition 3.1. A monomial (minimal) sequence f1, . . . , ft ∈ R is called a
d-sequence if (f1, . . . , fi−1) : fifj = (f1, . . . , fi−1) : fj for all i, j with 1 ≤ i ≤
j ≤ t, or, equivalently, if and only if

( f1
[f1, fifj]

, . . . ,
fi−1

[fi−1, fifj ]

)

=
( f1
[f1, fj]

, . . . ,
fi−1

[fi−1, fj ]

)

.

Further definitions and notations are in [6] and [4].

Lemma 3.1 ([6, Theorem 2.1]). Let f1, . . . , ft be a squarefree monomial se-

quence. Then f1, . . . , ft is a d-sequence if and only if there is no i 6= j such

that fi | fj and [fi, fj] | fk, ∀ 1 ≤ i < j < k ≤ t.

Corollary 3.1 ([1, Corollary 3.3]). Any d-sequence is a strong s-sequence.

Corollary 3.2. If f1, . . . , ft is a d-sequence, then (f1, . . . , ft) is an ideal of

linear type.

We are interested to give a classification of graphs G having generalized
graph ideals generated by d-sequences.

Let’s recall the definitions of certain examined graphs.
Cycle graphs on vertex set [n], denoted by Cn, consist of a unique cycle of

length n, that is an alternating sequence of n+1 distinct vertices and n edges
that begins and ends at the same vertex.

Complete graphs on vertex set [n], denoted by Kn, are those for which there
exists an edge for all the possible pairs {vi, vj} of vertices of it.

Star graphs on vertex set [n] =
{

{vi}, {v1, . . . , vi−1, vi+1, vn}
}

with center
vi, denoted by stari(n), i = 1, . . . , n, are complete bipartite graphs of the type
K1,n−1 .

Definition 3.2. The generalized graph ideal of G, denoted by Iq(G), is the
ideal of R generated by all the squarefree monomials Xi1 · · ·Xiq of degree q
such that the vertex vij is adjacent to vij+1

for all 1 ≤ j ≤ q − 1.

Definition 3.3. A path of length q − 1 in G, or (q − 1)-path, is an alternat-
ing sequence of vertices and edges {v1, f1, v2, . . . , vq−1, fq−1, vq}, where fi =
{vi, vi+1} is the edge joining vi and vi+1, and all the vertices are distinct.

Paths consisting of the same elements, different only on the order, are equal.

Remark 3.1. Iq(G) is associated to the paths of length q−1 in G. More precisely,
the generators of Iq(G) correspond to the (q − 1)-paths in G.

In particular, I2(G) is the generalized graph ideal generated by degree two
squarefree monomials corresponding to the edges of G. I2(G) is the edge ideal

of G, simply denoted by I(G).
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Now we expose a classification of graphs G having generalized graph ideals
generated by d-sequences, for fixed q ≥ 3.

Proposition 3.1. Let G be a graph with n ≥ 3 vertices, I3(G) = (f1, . . . , ft).
Then f1, . . . , ft form a d-sequence if and only if G is one of the following:

C 3 = K 3, the triangle;
E(G) = {{v1, v2}, {v2, v3}} and I3(G) = (X1X2X3);
E(G) = {{v1, v2}, {v2, v3}, {v3, v4}} and I3(G) = (X1X2X3, X2X3X4);
E(G) = {{vi, vi+1}, i=1, 2, 3, 4} and I3(G)= (X1X2X3, X3X4X5, X2X3X4);

any other one consisting of the union of two or more among them.

Proof. Let G be a graph on [n] vertices. Suppose that I3(G) = (f1, . . . , ft) and
f1, . . . , ft form a d-sequence, for any t. Then it is necessary that G is one of
the graphs described in the statement.

Suppose by contradiction that G is the graph on [6] vertices with edge set
E(G) = {{vi, vi+1}, i = 1, 2, 3, 4, 5} and consider I3(G) = (X1X2X3, X2X3X4,
X3X4X5, X4X5X6); regardless of the order, by Lemma 3.1, the sequence of the
generators of I3(G) will never be a d-sequence. For such graphs it is possible
to generalize to [n] vertices.

The same reason can be done for graphs on [n] vertices with edge set
{{v1, v2}, {v2, v3}, {v2, v4}, . . . , {v2, vn}} and for any other graph.

Conversely, suppose that G is one of the graphs in the statement; in par-
ticular, without lack of generality, if it is the graph on [5] vertices with edge
set {{v1, v2}, {v2, v3}, {v3, v4}, {v4, v5}} and I3(G) = (f1, f2, f3) such that f1 =
X1X2X3, f2 = X3X4X5, f3 = X2X3X4, then f1, f2, f3 is a d-sequence because
[f1, f2] = X3 divides f3. �

Proposition 3.2. Let G be a graph with n ≥ 4 vertices, I4(G) = (f1, . . . , ft).
Then f1, . . . , ft form a d-sequence if and only if G is one of the following:

C 4, the square;
S 4 = C 4 ∪ {one diagonal};
K 4, the square together with its diagonals;
E(G) = {{v1, v2}, {v2, v3}, {v3, v4}} and I4(G) = (X1X2X3X4);
E(G) = {{vi, vi+1}, i = 1, 2, 3, 4} and I4(G) = (X1X2X3X4, X2X3X4X5);
E(G) = {{vi, vi+1}, i = 1, 2, 3, 4, 5} and I4(G) = (X1X2X3X4, X3X4X5X6,

X2X3X4X5);
E(G) = {{v1, v2}, {v2, v3}, {v3, v4}, . . . , {v3, vn}} and I4(G) = (X1X2X3X4,

. . . , X1X2X3Xn);
C 3 ∪ starα(n−2), the union of C 3 and the star graph with center a vertex

vα of C 3;
any other one consisting of the union of two or more among them.

Proof. Let G be a graph on [n] vertices. Suppose that I4(G) = (f1, . . . , ft) and
f1, . . . , ft form a d-sequence, for any t. Then it is necessary that G is one of
the graphs described in the statement.
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Suppose by contradiction that G is the graph on [7] vertices with edge
set E(G) = {{vi, vi+1}, i = 1, . . . , 6} and I4(G) = (X1X2X3X4, X2X3X4X5,
X3X4X5X6, X4X5X6X7); regardless of the order, by Lemma 3.1, the sequence
of the generators of I4(G) never will be a d-sequence. For such graphs it is
possible to generalize to [n] vertices.

A similar reasoning can be made for any other graph.
Conversely, suppose that G is one of the graphs in the statement; in partic-

ular, without lack of generality, if it is the graph on [n] vertices with edge set
{{v1, v2}, {v2, v3}, {v3, v4}, {v3, v5}, . . . , {v3, vn}} and I4(G) = (f1, f2, . . . , ft)
such that f1 = X1X2X3X4, f2 = X1X2X3X5, . . . , ft = X1X2X3Xn, then
f1, . . . , ft is a d-sequence because [fi, fj ] = X1X2X3 divides fk, ∀ 1 ≤ i <
j < k ≤ t. �

Proposition 3.3. Let G be a graph with n ≥ 5 vertices, I5(G) = (f1, . . . , ft).
Then f1, . . . , ft form a d-sequence if and only if G is one of the following:

C 5, the pentagon;
S 5 = C 5 ∪ {any proper subset of the diagonals of C 5};
K 5, the pentagon together with all its diagonals;
E(G) = {{v1, v2}, {v2, v3}, {v3, v4}, {v4, v5}} and I5(G) = (X1X2X3X4X5);
E(G) = {{vi, vi+1}, i = 1, 2, 3, 4, 5} and

I5(G) = (X1X2X3X4X5, X2X3X4X5X6);
E(G) = {{vi, vi+1}, i = 1, . . . , 6} and

I5(G) = (X1X2X3X4X5, X3X4X5X6X7, X2X3X4X5X6);
E(G) = {{v1, v2}, {v2, v3}, {v3, v4}, {v4, v5}, . . . , {v4, vn}} and

I5(G) = (X1X2X3X4X5, . . . , X1X2X3X4Xn);
C 4 ∪ starα(n−3), the center of the star graph is any vertex vα of C 4;
S 4 ∪ starα(n−3), vα vertex of S 4;
K 4 ∪ starα(n−3), vα vertex of K 4;
C 3 ∪ starα(n−3) ∪ starβ(2), vα 6= vβ vertices of C 3;
C 3 ∪ C′

3 such that a vertex of C 3 is in common with one of C′
3;

any other one consisting of the union of two or more among them.

Proof. Let G be a graph on [n] vertices. Suppose that I5(G) = (f1, . . . , ft) and
f1, . . . , ft form a d-sequence, for any t. Then it is necessary that G is one of
the graphs described in the statement.

Suppose by contradiction that G is the graph on [8] vertices with edge
set E(G) = {{vi, vi+1}, i = 1, . . . , 7} and consider I5(G) = (X1X2X3X4X5,
X2X3X4X5X6, X3X4X5X6X7, X4X5X6X7X8); regardless of the order, by
Lemma 3.1, the sequence of the generators of I5(G) never will be a d-sequence.
For such graphs it is possible to generalize to [n] vertices. A similar reasoning
can be made for any other graph.

Conversely, suppose that G is one of the graphs in the statement; in partic-
ular, without lack of generality, if it is the graph on [n] vertices with edge set
{{v1, v2}, {v1, v4}, {v2, v3}, {v3, v4}, {v4, v5}, . . . , {v4, vn}}, namely the graph
C 4 ∪ star4(n−3), and I5(G) = (f1, . . . , ft) such that f1 = X1X2X3X4X5, f2 =
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X1X2X3X4X6, . . . , ft = X1X2X3X4Xn, then f1, . . . , ft is a d-sequence because
[fi, fj ] = X1X2X3X4 divides fk, ∀ 1 ≤ i < j < k ≤ t. �

Proposition 3.4. Let G be a graph with n ≥ 6 vertices, I6(G) = (f1, . . . , ft).
Then f1, . . . , ft form a d-sequence if and only if G is one of the following:

C 6, the hexagon;
S 6 = C 6 ∪ {any proper subset of the diagonals of C 6};
K 6, the hexagon together with all its diagonals;
E(G) = {{v1, v2}, {v2, v3}, {v3, v4}, {v4, v5}, {v5, v6}} and

I6(G) = (X1X2X3X4X5X6);
E(G) = {{vi, vi+1}, i = 1, . . . , 6} and

I6(G) = (X1X2X3X4X5X6, X2X3X4X5X6X7);
E(G) = {{vi, vi+1}, i = 1, . . . , 7} and

I6(G) = (X1X2X3X4X5X6, X3X4X5X6X7X8, X2X3X4X5X6X7);
E(G) = {{v1, v2}, {v2, v3}, {v3, v4}, {v4, v5}, {v5, v6}, . . . , {v5, vn}} and

I6(G) = (X1X2X3X4X5X6, . . . , X1X2X3X4X5Xn);
C 5 ∪ starα(n−4), the center of the star graph is any vertex vα of C 5;
S 5 ∪ starα(n−4), vα vertex of S 5;
K 5 ∪ starα(n−4), vα vertex of K 5;
C 4 ∪ starα(n−4) ∪ starβ(2), vα, vβ adjacent vertices of C 4;
S 4 ∪ starα(n− 4) ∪ starβ(2), vα, vβ vertices of S 4 not belonging to its

diagonal;
C 3 ∪ C 4 such that a vertex of C 4 is in common with one of C 3;
C 3 ∪ S 4 such that the vertex vα /∈ {diagonal of S 4} is in common with one

of C 3;
C 3 ∪C′

3 ∪ starβ(n−4) with vα common vertex of C 3, C
′
3; vβ (β 6=α) vertex of

C 3∪ C′
3;

any other one consisting of the union of two or more among them.

Proof. Let G be a graph on [n] vertices. Suppose that I6(G) = (f1, . . . , ft) and
f1, . . . , ft form a d-sequence, for any t. Then it is necessary that G is one of
the graphs described in the statement.

Suppose by contradiction that G is the graph on [9] vertices with edge set
E(G)={{vi, vi+1}, i=1, . . . , 8} and I6(G)=(X1X2X3X4X5X6, X2X3X4X5X6

X7, X3X4X5X6X7X8, X4X5X6X7X8X9); regardless of the order, by Lemma
3.1, the sequence of the generators of I6(G) never will be a d-sequence. For
such graphs it is possible to generalize to [n] vertices. A similar reasoning can
be made for any other graph.

Conversely, suppose that G is one of the graphs in the statement; in partic-
ular, without lack of generality, if it is the graph on [n] vertices with edge set
{{v1, v2}, {v1, v3}, {v2, v3}, {v3, v4}, {v3, v5}, {v4, v5}, {v5, v6}, . . . , {v5, vn}},
namely the graph C 3 ∪ C′

3 ∪ star5(n−4), and I6(G) = (f1, f2, . . . , ft) such that
f1 = X1X2X3X4X5X6, f2 = X1X2X3X4X5X7, . . . , ft = X1X2X3X4X5Xn,
then f1, . . . , ft is a d-sequence because [fi, fj] = X1X2X3X4X5 divides fk, ∀ 1 ≤
i < j < k ≤ t. �
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Let’s consider a significant class of generalized graph ideals generated by a
d-sequence.

Theorem 3.1. Let G be the graph on vertex set {v1, . . . , vn} whose edge set is

E(G) = E(Cm) ∪ {{vi, vm+1}, {vm+1, vm+2}, . . . , {vm+k−1, vm+k}}

∪ {{vj, vm+k+1}, {vj, vm+k+2}, . . . , {vj, vn}},

where Cm is the cycle on vertices {v1, . . . , vm}, m < n, k an integer, vi, vj are

vertices of Cm with i 6= j. Then the generalized graph ideal Im+k+1(G) ⊂ R =
K[X1, . . . , Xn] is generated by a d-sequence.

Proof. The generalized graph ideal Im+k+1(G) is generated by the squarefree
monomials

f1 = X1X2 · · ·XmXm+1 · · ·Xm+kXm+k+1,

f2 = X1X2 · · ·XmXm+1 · · ·Xm+kXm+k+2,

...

fn−m−k = X1X2 · · ·XmXm+1 · · ·Xm+kXn.

One has [fi, fj] = X1X2 · · ·XmXm+1 · · ·Xm+k divides fk for all 1 ≤ i < j <
k ≤ n −m − k. Hence by [6, Theorem 2.1], f1, f2, . . . , fn−m−k is a monomial
d-sequence. �

Corollary 3.3. Let G be the graph on vertex set {v1, . . . , vn} of the above

theorem. Then the generalized graph ideal Im+k+1(G) ⊂ R = K[X1, . . . , Xn] is
generated by a strong s-sequence.

Proof. It descends from [1, Corollary 3.3]. �

Finally, let’s use the theory of s-sequences for computing standard algebraic
invariants of the symmetric algebra of the generalized graph ideal Im+k+1(G)
in terms of their annihilator ideals.

Proposition 3.5. Let G be the graph on vertex set {v1, . . . , vn} of Theorem

3.1. The annihilator ideals of the generators of Im+k+1(G) are

I1=(0), Ii=(Xm+k+1, Xm+k+2, . . . , Xm+k+i−1) for i = 2, . . . , n−m− k.

Proof. Let I(G) = (f1, . . . , ft), where

f1 = X1X2 · · ·XmXm+1 · · ·Xm+kXm+k+1,

f2 = X1X2 · · ·XmXm+1 · · ·Xm+kXm+k+2,

...

ft = X1X2 · · ·XmXm+1 · · ·Xm+kXn and t = n−m− k.

Set fhk = fh
[fh,fk]

for h < k, h, k = 1, . . . , t. Then the annihilator ideals of

the monomial sequence f1, . . . , ft are Ii = (f1i, f2i, . . . , fi−1,i) for i = 1, . . . , t.
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For i = 1 we have I1 = (0) and by the structure of these monomials it
follows I2 = (f12) = (Xm+k+1), I3 = (f13, f23) = (Xm+k+1, Xm+k+2), . . .,
It = (f1,t, f2,t, . . . , ft−1,t) = (Xm+k+1, Xm+k+2, . . . , Xn−1). Hence

Ii = (Xm+k+1, Xm+k+2, . . . , Xm+k+i−1) for i = 2, . . . , n−m− k. �

Remark 3.2. By Proposition 3.5 one has

in≺(J) = ((Xm+k+1)T2, (Xm+k+1, Xm+k+2)T3, . . . ,

(Xm+k+1, Xm+k+2, . . . , Xn−1)Tn−m−k).

Theorem 3.2. Let G be as in Theorem 3.1. Then:
(a) SymR(Im+k+1(G)) is Cohen-Macaulay of dimension n+ 1;
(b) e(SymR(Im+k+1(G))) = n−m− k;
(c) reg(SymR(Im+k+1(G))) = 1.

Proof. The s-sequence that generates Im+k+1(G) is strong.
(a) It descends from [6, Theorem 4.8].
(b) By [1, Proposition 2.4], it follows that

e(SymR(Im+k+1(G))) =

n−m−k
∑

i=1

e(R/Ii).

By Proposition 3.5 the annihilator ideals Ii are generated by a regular se-
quence, then e(R/Ii) = 1 for i = 2, . . . , n − m − k, and e(R/(0)) = 1. Hence
e(SymR(Im+k+1(G))) = n−m− k.

(c) By [6, Theorem 4.8], one has

reg(SymR(Im+k+1(G))) ≤ max
2≤j≤t

{

j−1
∑

i=1

deg(fij)− (j − 2)},

where t = n−m− k. Then

reg(SymR(Im+k+1(G))) ≤ max
2≤j≤t

{

j−1
∑

i=1

deg(Xm+k+i)− (j − 2)}

= (j − 1)− (j − 2) = 1.

Moreover J is generated by linear forms of degree two. Then

reg(SymR(Im+k+1(G))) ≥ 1.

It follows that reg(SymR(I(G))) = 1. �
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