SOME MONOMIAL SEQUENCES ARISING FROM GRAPHS

Maurizio Imbesi, Monica La Barbiera, and Zhongming Tang

Abstract

. s-sequences and d-sequences are fundamental sequences intensively studied in many fields of algebra. In this paper we are interested in dealing with monomial sequences associated to graphs in order to establish conditions for which they are s-sequences and/or d-sequences.

1. Introduction

In this work we consider monomial sequences establishing conditions for which they are s-sequences and d-sequences in order to deduce some properties of the symmetric algebra of monomial ideals, in particular of some monomial ideals arising from graphs.

In [2] the notion of d-sequence was firstly given by Huneke for the study of Rees rings. In [1] the notion of s-sequence is employed to compute the invariants of the symmetric algebra of finitely generated modules and it is proved that any d-sequence is a strong s-sequence.

Some properties about monomial s-sequences are studied. In [1] it is given a necessary and sufficient condition for monomial sequences of length three to be s-sequences. Afterwards, in [6] it is shown a necessary and sufficient condition for monomial squarefree sequences of length four, and in [5] a more general statement for monomial sequences of any length related to forests. Our aim is to find necessary and sufficient conditions for monomial sequences of length greater than four to be s-sequences. Some results are obtained for edge sequences associated to very important classes of graphs and components of them.

The d-sequences have been intensively studied by many algebraists, the monomial d-sequences are characterized in [6]. Our aim is to investigate the notion of d-sequence for the monomial ideals arising from simple graphs in order to compute standard algebraic invariants of their symmetric algebra in terms of the corresponding invariants of special quotients of the polynomial ring related to the graphs.

[^0]The paper is organized as follows. Section 2 is devoted to discuss monomial s-sequences. We introduce some classes of acyclic graphs for which, using the theory of Gröbner bases, we prove conditions in order that their edge ideals are generated by s-sequences. In Section 3 we deduce some properties of the symmetric algebra of such graph ideals generated by d-sequences. More precisely, we compute the following invariants of the symmetric algebra of such path ideals generated by a d-sequence: the dimension, the multiplicity and the Castelnuovo-Mumford regularity.

2. Monomial s-sequences associated to graphs

Main definitions and notations principally come from [4], [6] and [7].
Let \mathcal{G} be a graph, $V(\mathcal{G})$ and $E(\mathcal{G})$ be the sets of its vertices and edges respectively. \mathcal{G} is said to be simple if, for all $\left\{v_{i}, v_{j}\right\} \in E(\mathcal{G})$, it is $v_{i} \neq v_{j} . \mathcal{G}$ is connected if it has no isolated subgraphs.

Let \mathcal{G} be a graph with vertex set $[n]=\left\{v_{1}, \ldots, v_{n}\right\}$. Let $R=K\left[X_{1}, \ldots, X_{n}\right]$ be the polynomial ring over a field K with one variable X_{i} for each vertex v_{i} and $I(\mathcal{G})=\left(\left\{X_{i} X_{j} \mid\left\{v_{i}, v_{j}\right\} \in E(\mathcal{G}), i \neq j\right\}\right)$ be the edge ideal associated to \mathcal{G} generated by degree two squarefree monomials of R.

Let's recall the theory of s-sequences in order to apply it to some classes of edge ideals.

Let M be a finitely generated module on a Noetherian ring R, and f_{1}, \ldots, f_{t} be the generators of M. Let $\left(a_{i j}\right)$, for $i=1, \ldots, t, j=1, \ldots, p$, be the relation matrix of M. Let $\operatorname{Sym}_{R}(M)$ be the symmetric algebra of M, then $\operatorname{Sym}_{R}(M)=R\left[T_{1}, \ldots, T_{t}\right] / J$, where $R\left[T_{1}, \ldots, T_{t}\right]$ is a polynomial ring in the variables T_{1}, \ldots, T_{t} and J the relation ideal, namely the ideal generated by $g_{j}=\sum_{i, j} a_{i j} T_{i}$ for $i=1, \ldots, t, j=1, \ldots, p$.

If we assign degree 1 to each variable T_{i} and degree 0 to the elements of R, then J is a graded ideal and $\operatorname{Sym}_{R}(M)$ is a graded algebra on R.

Set $S=R\left[T_{1}, \ldots, T_{t}\right]$ and let \prec be a term order on the monomials of S. With respect to it, if $f=\sum a_{\alpha} \underline{T}^{\alpha}$, where $\underline{T}^{\alpha}=T_{1}^{\alpha_{1}} \cdots T_{t}^{\alpha_{t}}$ and $\alpha=\left(\alpha_{1}, \ldots, \alpha_{t}\right) \in$ \mathbb{N}^{t}, we put $\operatorname{in}_{\prec}(f)=a_{\alpha} \underline{T}^{\alpha}$, where \underline{T}^{α} is the largest monomial in f such that $a_{\alpha} \neq 0$. So we can define the monomial ideal $\mathrm{in}_{\prec}(J)=\left(\left\{\mathrm{in}_{\prec}(f) \mid f \in J\right\}\right)$.

For every $i=1, \ldots, t$, we set $M_{i-1}=R f_{1}+\cdots+R f_{i-1}$ and let $I_{i}=M_{i-1}:_{R}$ f_{i} be the colon ideal. Since $M_{i} / M_{i-1} \simeq R / I_{i}, I_{i}$ is the annihilator of the cyclic module $R / I_{i} . I_{i}$ is called an annihilator ideal of the sequence f_{1}, \ldots, f_{t}.

It is $\left(I_{1} T_{1}, I_{2} T_{2}, \ldots, I_{t} T_{t}\right) \subseteq \operatorname{in}_{\prec}(J)$, and the two ideals coincide in degree 1 .
Definition 2.1. The sequence f_{1}, \ldots, f_{t} is said to be an s-sequence for M if

$$
\left(I_{1} T_{1}, I_{2} T_{2}, \ldots, I_{t} T_{t}\right)=\operatorname{in}_{\prec}(J) .
$$

When $I_{1} \subseteq I_{2} \subseteq \cdots \subseteq I_{t}, f_{1}, \ldots, f_{t}$ is said to be a strong s-sequence.
We can use the Gröbner bases theory to compute $\mathrm{in}_{\prec}(J)$. Let \prec be any term order on $S=K\left[X_{1}, \ldots, X_{n}, T_{1}, \ldots, T_{t}\right]$ with $X_{i} \prec T_{j}$ for all i, j. Then for any Gröbner basis B for $J \subset S$ with respect to \prec, we have $\operatorname{in}_{\prec}(J)=\left(\left\{\operatorname{in}_{\prec}(f) \mid f \in\right.\right.$
$B\}$). If the elements of B are linear in the T_{i}, then f_{1}, \ldots, f_{t} is an s-sequence for M.

Let $M=I=\left(f_{1}, \ldots, f_{t}\right)$ be a monomial ideal of R. Set $f_{i j}=\frac{f_{i}}{\left[f_{i}, f_{j}\right]}, i \neq j$, where $\left[f_{i}, f_{j}\right]$ is the greatest common divisor of the monomials f_{i} and $f_{j} . J$ is generated by $g_{i j}=f_{i j} T_{j}-f_{j i} T_{i}$ for $1 \leq i<j \leq t$. The monomial sequence f_{1}, \ldots, f_{t} is an s-sequence if and only if $g_{i j}$ is a Gröbner basis for J with respect to the term order \prec.

Notice that the annihilator ideals of the monomial sequence f_{1}, \ldots, f_{t} are the ideals $I_{i}=\left(f_{1 i}, f_{2 i}, \ldots, f_{i-1, i}\right)$ for $i=1, \ldots, t$ (see [1]).

Remark 2.1 ([1, Lemma 1.4]). From the theory of Gröbner bases, if f_{1}, \ldots, f_{t} is a monomial s-sequence with respect to some admissible term order \prec, then f_{1}, \ldots, f_{t} is an s-sequence for any other admissible term order.

In [1, Proposition 1.7], it is shown that a monomial sequence f_{1}, \ldots, f_{t} is an s-sequence if $\left[f_{i j}, f_{k l}\right]=1$ for all $i, j, k, l \in\{1,, \ldots, t\}$ with $i<j, k<l, i \neq k$, and $j \neq l$.

Moreover, for monomial sequences of length 3, the above condition is necessary, see [1, Proposition 1.8].

Afterwards, in [6, Theorem 4.1], it was proved that a monomial sequence f_{1}, \ldots, f_{t} is an s-sequence if $\left[f_{i j}, f_{k l}\right]=1$ or $f_{j l}\left[f_{i j}, f_{k l}\right] \mid f_{k l} f_{j i}$, or in case $i>k$, $f_{k i}\left[f_{i j}, f_{k l}\right] \mid f_{k l} f_{j i}$ for any $i<j, k<l, j<l$ and $k \neq i$.

Furthermore, for monomial squarefree sequences of length 4 , the above condition is also necessary, see [6, Proposition 4.7].

Using [1, Proposition 1.7], and [6, Theorem 4.1], we introduce some classes of graphs \mathcal{G} for which necessary and sufficient conditions hold in the case that their edge ideals are generated by s-sequences of length $t>4$.

Theorem 2.1. Let \mathcal{G} be the connected acyclic graph whose edge ideal $I(\mathcal{G})$ is generated by $f_{1}=X_{1} X_{n}, f_{2}=X_{2} X_{n}, \ldots, f_{n-1}=X_{n-1} X_{n}$ in $R=K\left[X_{1}, \ldots\right.$, X_{n}] for $n-1=t$. Then $f_{1}, f_{2}, \ldots, f_{n-1}$ is an s-sequence if and only if $\left[f_{i j}, f_{k l}\right]=1$ for all $i<j, k<l, i \neq k$ and $j \neq l, i, j, k, l \in\{1, \ldots, n-1\}$.
Proof. Let $f_{1}=X_{1} X_{n}, f_{2}=X_{2} X_{n}, \ldots, f_{n-1}=X_{n-1} X_{n}$ be an s-sequence. We show that $\left[f_{i j}, f_{k l}\right]=1$ for all $i<j, k<l, i \neq k$ and $j \neq l, i, j, k, l \in$ $\{1, \ldots, n-1\}$. The s-sequence property implies that $B=\left\{g_{i j}=f_{i j} T_{j}-f_{j i} T_{i}\right\}$ for $1 \leq i<j \leq n-1$ is a Gröbner basis of J. Hence the S-pairs

$$
S\left(g_{i j}, g_{k l}\right)=\frac{f_{i j} f_{l k}}{\left[f_{i j}, f_{k l}\right]} T_{j} T_{k}-\frac{f_{k l} f_{j i}}{\left[f_{i j}, f_{k l}\right]} T_{i} T_{l}
$$

with $i, j, k, l \in\{1, \ldots, n-1\}, i<j, i<k<l$, have a standard expression with respect to B with remainder 0 . Note that, to get a standard expression of $S\left(g_{i j}, g_{k l}\right)$ is equivalent to find some $g_{s t} \in B$ whose initial term divides the initial term of $S\left(g_{i j}, g_{k l}\right)$ and substitute a multiple of $g_{s t}$ such that the remaindered polynomial has a smaller initial term and so on up to the remainder is 0 . By [4, Theorem 3.1], one has the standard expression $S\left(g_{i j}, g_{k l}\right)=g_{i j} T_{l}-g_{k l} T_{j}$. Then
there exists $g_{i j} \in B$ whose initial term divides the initial term of $S\left(g_{i j}, g_{k l}\right)$. It follows that $f_{i j} T_{j} \left\lvert\, \frac{f_{i j} f_{l k}}{\left[f_{i j}, f_{k l}\right]} T_{j} T_{k}\right.$, then $f_{i j} \left\lvert\, \frac{f_{i j} f_{l k}}{\left[f_{i j}, f_{k l}\right]}\right.$ and $\left[f_{i j}, f_{k l}\right] \mid f_{l k}$. Being $\left[\left[f_{i j}, f_{k l}\right], f_{k l}\right]=1$, one has $\left[f_{i j}, f_{k l}\right]=1$.

Conversely, we have $\left[f_{i j}, f_{k l}\right]=\left[X_{i}, X_{k}\right]=1$ for all $i<j, k<l, i \neq k$ and $j \neq l, i, j, k, l \in\{1, \ldots, n-1\}$. Hence, by [1, Proposition 1.7], one can state that $I(\mathcal{G})$ is generated by an s-sequence (see also [3, Theorem 2.2]).

Theorem 2.2. Let \mathcal{G} be the connected acyclic graph whose edge ideal $I(\mathcal{G})$ is generated by $f_{1}=X_{1} X_{2}, f_{2}=X_{2} X_{3}, \ldots, f_{n-1}=X_{n-1} X_{n}$ in $R=K\left[X_{1}, \ldots\right.$, $\left.X_{n}\right]$, for $n-1=t$. Then $f_{1}, f_{2}, \ldots, f_{n-1}$ is an s-sequence if and only if $\left[f_{i j}, f_{k l}\right]=1$ or $f_{j l}\left[f_{i j}, f_{k l}\right] \mid f_{k l} f_{j i}$, or $f_{k i}\left[f_{i j}, f_{k l}\right] \mid f_{k l} f_{j i}$ in case $i>k$ for any $i<j, k<l, j<l$ and $i \neq k, i, j, k, l \in\{1, \ldots, n-1\}$.

Proof. Let $f_{1}=X_{1} X_{2}, f_{2}=X_{2} X_{3}, \ldots, f_{n-1}=X_{n-1} X_{n}$ be an s-sequence. We show that $\left[f_{i j}, f_{k l}\right]=1$ or $\frac{f_{k l} f_{j i}}{\left[f_{i j}, f_{k l}\right]}$ is divided by $f_{j l}$, or by $f_{k i}$ in case $i>k$, for any $i<j, k<l, j<l$ and $i \neq k, i, j, k, l \in\{1, \ldots, n-1\}$. The s-sequence property implies that $B=\left\{g_{i j}=f_{i j} T_{j}-f_{j i} T_{i} \mid 1 \leq i<j \leq n-1\right\}$ is a Gröbner basis of J. Hence the S-pairs

$$
S\left(g_{i j}, g_{k l}\right)=\frac{f_{i j} f_{l k}}{\left[f_{i j}, f_{k l}\right]} T_{j} T_{k}-\frac{f_{k l} f_{j i}}{\left[f_{i j}, f_{k l}\right]} T_{i} T_{l}
$$

with $i, j, k, l \in\{1, \ldots, n-1\}, i<j, i<k<l$, have a standard expression with respect to B with remainder 0 . First note that $\left[f_{i j}, f_{k, l}\right]=1$ for $j=k$, because f_{1}, \ldots, f_{n-1} are squarefree monomials. Moreover, by the structure of the monomials f_{1}, \ldots, f_{n-1}, one has $\left[f_{i j}, f_{k l}\right]=1$ for $j \neq k$ and $i \neq k-1$. Otherwise, by [4, Theorem 3.1], one has the following standard expression:

$$
S\left(g_{i j}, g_{k l}\right)=\left[f_{j i}, f_{l k}\right]\left(\frac{f_{j l}}{\left[f_{i k}, f_{j l}\right]} g_{i k} T_{l}-\frac{f_{i k}}{\left[f_{i k}, f_{j l}\right]} g_{j l} T_{k}\right)
$$

Then there exists $g_{j l} \in B$, or, in case $i>k, g_{i k} \in B$, whose initial term divides the initial term of $S\left(g_{i j}, g_{k l}\right)$. So, it follows that $f_{j l} \left\lvert\, \frac{f_{k l} f_{j i}}{\left[f_{i j}, f_{k l}\right]}\right.$ or, in case $i>k$, $f_{k i} \left\lvert\, \frac{f_{k l} f_{j i}}{\left[f_{i j}, f_{k l}\right]}\right.$. The thesis follows.

Conversely, because f_{1}, \ldots, f_{n-1} are squarefree monomials, $\left[f_{i j}, f_{j l}\right]=1$ and, by the structure of these monomials, one has $\left[f_{i j}, f_{k l}\right]=1$ for $j \neq k$ and $k \neq i+1$. Otherwise one has $\left[f_{i j}, f_{k l}\right]=X_{i}$ for $i>k$, and $\left[f_{i j}, f_{k l}\right]=X_{k}$ for $i<k$. Then for $i>k: f_{j l}\left[f_{i j}, f_{k l}\right] \mid f_{k l} f_{j i}$, in fact $X_{j} X_{j+1} X_{i} \mid X_{i} X_{k} X_{j} X_{j+1}$, or $f_{k i}\left[f_{i j}, f_{k l}\right] \mid f_{k l} f_{j i}$, in fact $X_{k} X_{i} \mid X_{i} X_{k} f_{j i}$. For $i<k: f_{j l}\left[f_{i j}, f_{k l}\right] \mid f_{k l} f_{j i}$, in fact $X_{j} X_{j+1} X_{k} \mid X_{i} X_{k} X_{j} X_{j+1}$. Hence, by [6, Theorem 4.1], one can state that $I(\mathcal{G})$ is generated by an s-sequence (see also [3, Theorem 2.2]).

3. Monomial d-sequences and symmetric algebras of graph ideals

The concept of d-sequence was firstly given by Huneke [2] for the study of Rees rings. We are interested in monomial d-sequences.

Let R be a Noetherian ring, $f_{1}, \ldots, f_{t} \in R$ be a monomial sequence. We say that f_{1}, \ldots, f_{t} is minimal if it is a minimal system of generators of the ideal $I=\left(f_{1}, \ldots, f_{t}\right)$, which is equivalent to f_{i} does not divide f_{j} for all $i \neq j$.
Definition 3.1. A monomial (minimal) sequence $f_{1}, \ldots, f_{t} \in R$ is called a d-sequence if $\left(f_{1}, \ldots, f_{i-1}\right): f_{i} f_{j}=\left(f_{1}, \ldots, f_{i-1}\right): f_{j}$ for all i, j with $1 \leq i \leq$ $j \leq t$, or, equivalently, if and only if

$$
\left(\frac{f_{1}}{\left[f_{1}, f_{i} f_{j}\right]}, \ldots, \frac{f_{i-1}}{\left[f_{i-1}, f_{i} f_{j}\right]}\right)=\left(\frac{f_{1}}{\left[f_{1}, f_{j}\right]}, \ldots, \frac{f_{i-1}}{\left[f_{i-1}, f_{j}\right]}\right)
$$

Further definitions and notations are in [6] and [4].
Lemma 3.1 ($\left[6\right.$, Theorem 2.1]). Let f_{1}, \ldots, f_{t} be a squarefree monomial sequence. Then f_{1}, \ldots, f_{t} is a d-sequence if and only if there is no $i \neq j$ such that $f_{i} \mid f_{j}$ and $\left[f_{i}, f_{j}\right] \mid f_{k}, \forall 1 \leq i<j<k \leq t$.
Corollary 3.1 ([1, Corollary 3.3]). Any d-sequence is a strong s-sequence.
Corollary 3.2. If f_{1}, \ldots, f_{t} is a d-sequence, then $\left(f_{1}, \ldots, f_{t}\right)$ is an ideal of linear type.

We are interested to give a classification of graphs \mathcal{G} having generalized graph ideals generated by d-sequences.

Let's recall the definitions of certain examined graphs.
Cycle graphs on vertex set [n], denoted by \mathcal{C}_{n}, consist of a unique cycle of length n, that is an alternating sequence of $n+1$ distinct vertices and n edges that begins and ends at the same vertex.

Complete graphs on vertex set $[n]$, denoted by \mathcal{K}_{n}, are those for which there exists an edge for all the possible pairs $\left\{v_{i}, v_{j}\right\}$ of vertices of it.

Star graphs on vertex set $[n]=\left\{\left\{v_{i}\right\},\left\{v_{1}, \ldots, v_{i-1}, v_{i+1}, v_{n}\right\}\right\}$ with center v_{i}, denoted by $\operatorname{star}_{i}(n), i=1, \ldots, n$, are complete bipartite graphs of the type $K_{1, n-1}$.

Definition 3.2. The generalized graph ideal of \mathcal{G}, denoted by $I_{q}(\mathcal{G})$, is the ideal of R generated by all the squarefree monomials $X_{i_{1}} \cdots X_{i_{q}}$ of degree q such that the vertex $v_{i_{j}}$ is adjacent to $v_{i_{j+1}}$ for all $1 \leq j \leq q-1$.

Definition 3.3. A path of length $q-1$ in \mathcal{G}, or $(q-1)$-path, is an alternating sequence of vertices and edges $\left\{v_{1}, f_{1}, v_{2}, \ldots, v_{q-1}, f_{q-1}, v_{q}\right\}$, where $f_{i}=$ $\left\{v_{i}, v_{i+1}\right\}$ is the edge joining v_{i} and v_{i+1}, and all the vertices are distinct.

Paths consisting of the same elements, different only on the order, are equal.
Remark 3.1. $I_{q}(\mathcal{G})$ is associated to the paths of length $q-1$ in \mathcal{G}. More precisely, the generators of $I_{q}(\mathcal{G})$ correspond to the $(q-1)$-paths in \mathcal{G}.

In particular, $I_{2}(\mathcal{G})$ is the generalized graph ideal generated by degree two squarefree monomials corresponding to the edges of $\mathcal{G} . I_{2}(\mathcal{G})$ is the edge ideal of \mathcal{G}, simply denoted by $I(\mathcal{G})$.

Now we expose a classification of graphs \mathcal{G} having generalized graph ideals generated by d-sequences, for fixed $q \geq 3$.

Proposition 3.1. Let \mathcal{G} be a graph with $n \geq 3$ vertices, $I_{3}(\mathcal{G})=\left(f_{1}, \ldots, f_{t}\right)$. Then f_{1}, \ldots, f_{t} form a d-sequence if and only if \mathcal{G} is one of the following:
$\mathcal{C}_{3}=\mathcal{K}_{3}$, the triangle;
$E(\mathcal{G})=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\}\right\}$ and $I_{3}(\mathcal{G})=\left(X_{1} X_{2} X_{3}\right) ;$
$E(\mathcal{G})=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\},\left\{v_{3}, v_{4}\right\}\right\}$ and $I_{3}(\mathcal{G})=\left(X_{1} X_{2} X_{3}, X_{2} X_{3} X_{4}\right) ;$
$E(\mathcal{G})=\left\{\left\{v_{i}, v_{i+1}\right\}, i=1,2,3,4\right\}$ and $I_{3}(\mathcal{G})=\left(X_{1} X_{2} X_{3}, X_{3} X_{4} X_{5}, X_{2} X_{3} X_{4}\right) ;$
any other one consisting of the union of two or more among them.
Proof. Let \mathcal{G} be a graph on $[n]$ vertices. Suppose that $I_{3}(\mathcal{G})=\left(f_{1}, \ldots, f_{t}\right)$ and f_{1}, \ldots, f_{t} form a d-sequence, for any t. Then it is necessary that \mathcal{G} is one of the graphs described in the statement.

Suppose by contradiction that \mathcal{G} is the graph on [6] vertices with edge set $E(\mathcal{G})=\left\{\left\{v_{i}, v_{i+1}\right\}, i=1,2,3,4,5\right\}$ and consider $I_{3}(\mathcal{G})=\left(X_{1} X_{2} X_{3}, X_{2} X_{3} X_{4}\right.$, $X_{3} X_{4} X_{5}, X_{4} X_{5} X_{6}$); regardless of the order, by Lemma 3.1, the sequence of the generators of $I_{3}(\mathcal{G})$ will never be a d-sequence. For such graphs it is possible to generalize to $[n]$ vertices.

The same reason can be done for graphs on $[n]$ vertices with edge set $\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\},\left\{v_{2}, v_{4}\right\}, \ldots,\left\{v_{2}, v_{n}\right\}\right\}$ and for any other graph.

Conversely, suppose that \mathcal{G} is one of the graphs in the statement; in particular, without lack of generality, if it is the graph on [5] vertices with edge set $\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\},\left\{v_{3}, v_{4}\right\},\left\{v_{4}, v_{5}\right\}\right\}$ and $I_{3}(\mathcal{G})=\left(f_{1}, f_{2}, f_{3}\right)$ such that $f_{1}=$ $X_{1} X_{2} X_{3}, f_{2}=X_{3} X_{4} X_{5}, f_{3}=X_{2} X_{3} X_{4}$, then f_{1}, f_{2}, f_{3} is a d-sequence because $\left[f_{1}, f_{2}\right]=X_{3}$ divides f_{3}.

Proposition 3.2. Let \mathcal{G} be a graph with $n \geq 4$ vertices, $I_{4}(\mathcal{G})=\left(f_{1}, \ldots, f_{t}\right)$. Then f_{1}, \ldots, f_{t} form a d-sequence if and only if \mathcal{G} is one of the following:
\mathcal{C}_{4}, the square;
$\mathcal{S}_{4}=\mathcal{C}_{4} \cup\{$ one diagonal $\} ;$
\mathcal{K}_{4}, the square together with its diagonals;
$E(\mathcal{G})=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\},\left\{v_{3}, v_{4}\right\}\right\}$ and $I_{4}(\mathcal{G})=\left(X_{1} X_{2} X_{3} X_{4}\right)$;
$E(\mathcal{G})=\left\{\left\{v_{i}, v_{i+1}\right\}, i=1,2,3,4\right\}$ and $I_{4}(\mathcal{G})=\left(X_{1} X_{2} X_{3} X_{4}, X_{2} X_{3} X_{4} X_{5}\right) ;$
$E(\mathcal{G})=\left\{\left\{v_{i}, v_{i+1}\right\}, i=1,2,3,4,5\right\}$ and $I_{4}(\mathcal{G})=\left(X_{1} X_{2} X_{3} X_{4}, X_{3} X_{4} X_{5} X_{6}\right.$, $X_{2} X_{3} X_{4} X_{5}$);
$E(\mathcal{G})=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\},\left\{v_{3}, v_{4}\right\}, \ldots,\left\{v_{3}, v_{n}\right\}\right\}$ and $I_{4}(\mathcal{G})=\left(X_{1} X_{2} X_{3} X_{4}\right.$, $\ldots, X_{1} X_{2} X_{3} X_{n}$);
$\mathcal{C}_{3} \cup \operatorname{star}_{\alpha}(n-2)$, the union of \mathcal{C}_{3} and the star graph with center a vertex v_{α} of \mathcal{C}_{3};
any other one consisting of the union of two or more among them.
Proof. Let \mathcal{G} be a graph on $[n]$ vertices. Suppose that $I_{4}(\mathcal{G})=\left(f_{1}, \ldots, f_{t}\right)$ and f_{1}, \ldots, f_{t} form a d-sequence, for any t. Then it is necessary that \mathcal{G} is one of the graphs described in the statement.

Suppose by contradiction that \mathcal{G} is the graph on [7] vertices with edge set $E(\mathcal{G})=\left\{\left\{v_{i}, v_{i+1}\right\}, i=1, \ldots, 6\right\}$ and $I_{4}(\mathcal{G})=\left(X_{1} X_{2} X_{3} X_{4}, X_{2} X_{3} X_{4} X_{5}\right.$, $X_{3} X_{4} X_{5} X_{6}, X_{4} X_{5} X_{6} X_{7}$); regardless of the order, by Lemma 3.1, the sequence of the generators of $I_{4}(\mathcal{G})$ never will be a d-sequence. For such graphs it is possible to generalize to $[n]$ vertices.

A similar reasoning can be made for any other graph.
Conversely, suppose that \mathcal{G} is one of the graphs in the statement; in particular, without lack of generality, if it is the graph on $[n]$ vertices with edge set $\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\},\left\{v_{3}, v_{4}\right\},\left\{v_{3}, v_{5}\right\}, \ldots,\left\{v_{3}, v_{n}\right\}\right\}$ and $I_{4}(\mathcal{G})=\left(f_{1}, f_{2}, \ldots, f_{t}\right)$ such that $f_{1}=X_{1} X_{2} X_{3} X_{4}, f_{2}=X_{1} X_{2} X_{3} X_{5}, \ldots, f_{t}=X_{1} X_{2} X_{3} X_{n}$, then f_{1}, \ldots, f_{t} is a d-sequence because $\left[f_{i}, f_{j}\right]=X_{1} X_{2} X_{3}$ divides $f_{k}, \forall 1 \leq i<$ $j<k \leq t$.

Proposition 3.3. Let \mathcal{G} be a graph with $n \geq 5$ vertices, $I_{5}(\mathcal{G})=\left(f_{1}, \ldots, f_{t}\right)$. Then f_{1}, \ldots, f_{t} form a d-sequence if and only if \mathcal{G} is one of the following:
\mathcal{C}_{5}, the pentagon;
$\mathcal{S}_{5}=\mathcal{C}_{5} \cup\left\{\right.$ any proper subset of the diagonals of $\left.\mathcal{C}_{5}\right\}$;
\mathcal{K}_{5}, the pentagon together with all its diagonals;
$E(\mathcal{G})=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\},\left\{v_{3}, v_{4}\right\},\left\{v_{4}, v_{5}\right\}\right\}$ and $I_{5}(\mathcal{G})=\left(X_{1} X_{2} X_{3} X_{4} X_{5}\right)$;
$E(\mathcal{G})=\left\{\left\{v_{i}, v_{i+1}\right\}, i=1,2,3,4,5\right\}$ and
$I_{5}(\mathcal{G})=\left(X_{1} X_{2} X_{3} X_{4} X_{5}, X_{2} X_{3} X_{4} X_{5} X_{6}\right)$;
$E(\mathcal{G})=\left\{\left\{v_{i}, v_{i+1}\right\}, i=1, \ldots, 6\right\}$ and
$I_{5}(\mathcal{G})=\left(X_{1} X_{2} X_{3} X_{4} X_{5}, X_{3} X_{4} X_{5} X_{6} X_{7}, X_{2} X_{3} X_{4} X_{5} X_{6}\right) ;$
$E(\mathcal{G})=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\},\left\{v_{3}, v_{4}\right\},\left\{v_{4}, v_{5}\right\}, \ldots,\left\{v_{4}, v_{n}\right\}\right\}$ and
$I_{5}(\mathcal{G})=\left(X_{1} X_{2} X_{3} X_{4} X_{5}, \ldots, X_{1} X_{2} X_{3} X_{4} X_{n}\right) ;$
$\mathcal{C}_{4} \cup \operatorname{star}_{\alpha}(n-3)$, the center of the star graph is any vertex v_{α} of \mathcal{C}_{4};
$\mathcal{S}_{4} \cup$ star $_{\alpha}(n-3), v_{\alpha}$ vertex of \mathcal{S}_{4};
$\mathcal{K}_{4} \cup$ star $_{\alpha}(n-3)$, v_{α} vertex of \mathcal{K}_{4};
$\mathcal{C}_{3} \cup \operatorname{star}_{\alpha}(n-3) \cup \operatorname{star}_{\beta}(2), v_{\alpha} \neq v_{\beta}$ vertices of $\mathcal{C}_{3} ;$
$\mathcal{C}_{3} \cup \mathcal{C}_{3}^{\prime}$ such that a vertex of \mathcal{C}_{3} is in common with one of \mathcal{C}_{3}^{\prime};
any other one consisting of the union of two or more among them.
Proof. Let \mathcal{G} be a graph on $[n]$ vertices. Suppose that $I_{5}(\mathcal{G})=\left(f_{1}, \ldots, f_{t}\right)$ and f_{1}, \ldots, f_{t} form a d-sequence, for any t. Then it is necessary that \mathcal{G} is one of the graphs described in the statement.

Suppose by contradiction that \mathcal{G} is the graph on [8] vertices with edge set $E(\mathcal{G})=\left\{\left\{v_{i}, v_{i+1}\right\}, i=1, \ldots, 7\right\}$ and consider $I_{5}(\mathcal{G})=\left(X_{1} X_{2} X_{3} X_{4} X_{5}\right.$, $\left.X_{2} X_{3} X_{4} X_{5} X_{6}, X_{3} X_{4} X_{5} X_{6} X_{7}, X_{4} X_{5} X_{6} X_{7} X_{8}\right) ;$ regardless of the order, by Lemma 3.1, the sequence of the generators of $I_{5}(\mathcal{G})$ never will be a d-sequence. For such graphs it is possible to generalize to $[n]$ vertices. A similar reasoning can be made for any other graph.

Conversely, suppose that \mathcal{G} is one of the graphs in the statement; in particular, without lack of generality, if it is the graph on $[n]$ vertices with edge set $\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{1}, v_{4}\right\},\left\{v_{2}, v_{3}\right\},\left\{v_{3}, v_{4}\right\},\left\{v_{4}, v_{5}\right\}, \ldots,\left\{v_{4}, v_{n}\right\}\right\}$, namely the graph $\mathcal{C}_{4} \cup \operatorname{star}_{4}(n-3)$, and $I_{5}(\mathcal{G})=\left(f_{1}, \ldots, f_{t}\right)$ such that $f_{1}=X_{1} X_{2} X_{3} X_{4} X_{5}, f_{2}=$
$X_{1} X_{2} X_{3} X_{4} X_{6}, \ldots, f_{t}=X_{1} X_{2} X_{3} X_{4} X_{n}$, then f_{1}, \ldots, f_{t} is a d-sequence because $\left[f_{i}, f_{j}\right]=X_{1} X_{2} X_{3} X_{4}$ divides $f_{k}, \forall 1 \leq i<j<k \leq t$.
Proposition 3.4. Let \mathcal{G} be a graph with $n \geq 6$ vertices, $I_{6}(\mathcal{G})=\left(f_{1}, \ldots, f_{t}\right)$. Then f_{1}, \ldots, f_{t} form a d-sequence if and only if \mathcal{G} is one of the following:
\mathcal{C}_{6}, the hexagon;
$\mathcal{S}_{6}=\mathcal{C}_{6} \cup\left\{\right.$ any proper subset of the diagonals of $\left.\mathcal{C}_{6}\right\} ;$
\mathcal{K}_{6}, the hexagon together with all its diagonals;
$E(\mathcal{G})=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\},\left\{v_{3}, v_{4}\right\},\left\{v_{4}, v_{5}\right\},\left\{v_{5}, v_{6}\right\}\right\}$ and
$I_{6}(\mathcal{G})=\left(X_{1} X_{2} X_{3} X_{4} X_{5} X_{6}\right) ;$
$E(\mathcal{G})=\left\{\left\{v_{i}, v_{i+1}\right\}, i=1, \ldots, 6\right\}$ and
$I_{6}(\mathcal{G})=\left(X_{1} X_{2} X_{3} X_{4} X_{5} X_{6}, X_{2} X_{3} X_{4} X_{5} X_{6} X_{7}\right) ;$
$E(\mathcal{G})=\left\{\left\{v_{i}, v_{i+1}\right\}, i=1, \ldots, 7\right\}$ and
$I_{6}(\mathcal{G})=\left(X_{1} X_{2} X_{3} X_{4} X_{5} X_{6}, X_{3} X_{4} X_{5} X_{6} X_{7} X_{8}, X_{2} X_{3} X_{4} X_{5} X_{6} X_{7}\right) ;$
$E(\mathcal{G})=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\},\left\{v_{3}, v_{4}\right\},\left\{v_{4}, v_{5}\right\},\left\{v_{5}, v_{6}\right\}, \ldots,\left\{v_{5}, v_{n}\right\}\right\}$ and
$I_{6}(\mathcal{G})=\left(X_{1} X_{2} X_{3} X_{4} X_{5} X_{6}, \ldots, X_{1} X_{2} X_{3} X_{4} X_{5} X_{n}\right) ;$
$\mathcal{C}_{5} \cup$ star $_{\alpha}(n-4)$, the center of the star graph is any vertex v_{α} of \mathcal{C}_{5};
$\mathcal{S}_{5} \cup \operatorname{star}_{\alpha}(n-4)$, v_{α} vertex of \mathcal{S}_{5};
$\mathcal{K}_{5} \cup$ star $_{\alpha}(n-4)$, v_{α} vertex of \mathcal{K}_{5};
$\mathcal{C}_{4} \cup \operatorname{star}_{\alpha}(n-4) \cup \operatorname{star}_{\beta}(2), v_{\alpha}, v_{\beta}$ adjacent vertices of $\mathcal{C}_{4} ;$
$\mathcal{S}_{4} \cup$ star $_{\alpha}(n-4) \cup \operatorname{star}_{\beta}(2), v_{\alpha}, v_{\beta}$ vertices of \mathcal{S}_{4} not belonging to its diagonal;
$\mathcal{C}_{3} \cup \mathcal{C}_{4}$ such that a vertex of \mathcal{C}_{4} is in common with one of \mathcal{C}_{3};
$\mathcal{C}_{3} \cup \mathcal{S}_{4}$ such that the vertex $v_{\alpha} \notin\left\{\right.$ diagonal of $\left.\mathcal{S}_{4}\right\}$ is in common with one of \mathcal{C}_{3};
$\mathcal{C}_{3} \cup \mathcal{C}_{3}^{\prime} \cup \operatorname{star}_{\beta}(n-4)$ with v_{α} common vertex of $\mathcal{C}_{3}, \mathcal{C}_{3}^{\prime} ; v_{\beta}(\beta \neq \alpha)$ vertex of $\mathcal{C}_{3} \cup \mathcal{C}_{3}^{\prime} ;$
any other one consisting of the union of two or more among them.
Proof. Let \mathcal{G} be a graph on $[n]$ vertices. Suppose that $I_{6}(\mathcal{G})=\left(f_{1}, \ldots, f_{t}\right)$ and f_{1}, \ldots, f_{t} form a d-sequence, for any t. Then it is necessary that \mathcal{G} is one of the graphs described in the statement.

Suppose by contradiction that \mathcal{G} is the graph on [9] vertices with edge set $E(\mathcal{G})=\left\{\left\{v_{i}, v_{i+1}\right\}, i=1, \ldots, 8\right\}$ and $I_{6}(\mathcal{G})=\left(X_{1} X_{2} X_{3} X_{4} X_{5} X_{6}, X_{2} X_{3} X_{4} X_{5} X_{6}\right.$ $\left.X_{7}, X_{3} X_{4} X_{5} X_{6} X_{7} X_{8}, X_{4} X_{5} X_{6} X_{7} X_{8} X_{9}\right)$; regardless of the order, by Lemma 3.1, the sequence of the generators of $I_{6}(\mathcal{G})$ never will be a d-sequence. For such graphs it is possible to generalize to $[n]$ vertices. A similar reasoning can be made for any other graph.

Conversely, suppose that \mathcal{G} is one of the graphs in the statement; in particular, without lack of generality, if it is the graph on [n] vertices with edge set $\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{1}, v_{3}\right\},\left\{v_{2}, v_{3}\right\},\left\{v_{3}, v_{4}\right\},\left\{v_{3}, v_{5}\right\},\left\{v_{4}, v_{5}\right\},\left\{v_{5}, v_{6}\right\}, \ldots,\left\{v_{5}, v_{n}\right\}\right\}$, namely the graph $\mathcal{C}_{3} \cup \mathcal{C}_{3}^{\prime} \cup \operatorname{star}_{5}(n-4)$, and $I_{6}(\mathcal{G})=\left(f_{1}, f_{2}, \ldots, f_{t}\right)$ such that $f_{1}=X_{1} X_{2} X_{3} X_{4} X_{5} X_{6}, f_{2}=X_{1} X_{2} X_{3} X_{4} X_{5} X_{7}, \ldots, f_{t}=X_{1} X_{2} X_{3} X_{4} X_{5} X_{n}$, then f_{1}, \ldots, f_{t} is a d-sequence because $\left[f_{i}, f_{j}\right]=X_{1} X_{2} X_{3} X_{4} X_{5}$ divides $f_{k}, \forall 1 \leq$ $i<j<k \leq t$.

Let's consider a significant class of generalized graph ideals generated by a d-sequence.

Theorem 3.1. Let \mathcal{G} be the graph on vertex set $\left\{v_{1}, \ldots, v_{n}\right\}$ whose edge set is

$$
\begin{aligned}
E(\mathcal{G})=E\left(C_{m}\right) & \cup\left\{\left\{v_{i}, v_{m+1}\right\},\left\{v_{m+1}, v_{m+2}\right\}, \ldots,\left\{v_{m+k-1}, v_{m+k}\right\}\right\} \\
& \cup\left\{\left\{v_{j}, v_{m+k+1}\right\},\left\{v_{j}, v_{m+k+2}\right\}, \ldots,\left\{v_{j}, v_{n}\right\}\right\},
\end{aligned}
$$

where C_{m} is the cycle on vertices $\left\{v_{1}, \ldots, v_{m}\right\}, m<n, k$ an integer, v_{i}, v_{j} are vertices of C_{m} with $i \neq j$. Then the generalized graph ideal $I_{m+k+1}(\mathcal{G}) \subset R=$ $K\left[X_{1}, \ldots, X_{n}\right]$ is generated by a d-sequence.
Proof. The generalized graph ideal $I_{m+k+1}(\mathcal{G})$ is generated by the squarefree monomials

$$
\begin{aligned}
f_{1} & =X_{1} X_{2} \cdots X_{m} X_{m+1} \cdots X_{m+k} X_{m+k+1}, \\
f_{2} & =X_{1} X_{2} \cdots X_{m} X_{m+1} \cdots X_{m+k} X_{m+k+2} \\
& \vdots \\
f_{n-m-k} & =X_{1} X_{2} \cdots X_{m} X_{m+1} \cdots X_{m+k} X_{n} .
\end{aligned}
$$

One has $\left[f_{i}, f_{j}\right]=X_{1} X_{2} \cdots X_{m} X_{m+1} \cdots X_{m+k}$ divides f_{k} for all $1 \leq i<j<$ $k \leq n-m-k$. Hence by [6, Theorem 2.1], $f_{1}, f_{2}, \ldots, f_{n-m-k}$ is a monomial d-sequence.

Corollary 3.3. Let \mathcal{G} be the graph on vertex set $\left\{v_{1}, \ldots, v_{n}\right\}$ of the above theorem. Then the generalized graph ideal $I_{m+k+1}(\mathcal{G}) \subset R=K\left[X_{1}, \ldots, X_{n}\right]$ is generated by a strong s-sequence.
Proof. It descends from [1, Corollary 3.3].
Finally, let's use the theory of s-sequences for computing standard algebraic invariants of the symmetric algebra of the generalized graph ideal $I_{m+k+1}(\mathcal{G})$ in terms of their annihilator ideals.

Proposition 3.5. Let \mathcal{G} be the graph on vertex set $\left\{v_{1}, \ldots, v_{n}\right\}$ of Theorem 3.1. The annihilator ideals of the generators of $I_{m+k+1}(\mathcal{G})$ are

$$
I_{1}=(0), \quad I_{i}=\left(X_{m+k+1}, X_{m+k+2}, \ldots, X_{m+k+i-1}\right) \text { for } i=2, \ldots, n-m-k
$$

Proof. Let $I(\mathcal{G})=\left(f_{1}, \ldots, f_{t}\right)$, where

$$
\begin{aligned}
f_{1} & =X_{1} X_{2} \cdots X_{m} X_{m+1} \cdots X_{m+k} X_{m+k+1} \\
f_{2} & =X_{1} X_{2} \cdots X_{m} X_{m+1} \cdots X_{m+k} X_{m+k+2}, \\
& \vdots \\
f_{t} & =X_{1} X_{2} \cdots X_{m} X_{m+1} \cdots X_{m+k} X_{n} \text { and } t=n-m-k .
\end{aligned}
$$

Set $f_{h k}=\frac{f_{h}}{\left[f_{h}, f_{k}\right]}$ for $h<k, h, k=1, \ldots, t$. Then the annihilator ideals of the monomial sequence f_{1}, \ldots, f_{t} are $I_{i}=\left(f_{1 i}, f_{2 i}, \ldots, f_{i-1, i}\right)$ for $i=1, \ldots, t$.

For $i=1$ we have $I_{1}=(0)$ and by the structure of these monomials it follows $I_{2}=\left(f_{12}\right)=\left(X_{m+k+1}\right), I_{3}=\left(f_{13}, f_{23}\right)=\left(X_{m+k+1}, X_{m+k+2}\right), \ldots$, $I_{t}=\left(f_{1, t}, f_{2, t}, \ldots, f_{t-1, t}\right)=\left(X_{m+k+1}, X_{m+k+2}, \ldots, X_{n-1}\right)$. Hence

$$
I_{i}=\left(X_{m+k+1}, X_{m+k+2}, \ldots, X_{m+k+i-1}\right) \text { for } i=2, \ldots, n-m-k
$$

Remark 3.2. By Proposition 3.5 one has

$$
\begin{aligned}
& \operatorname{in}_{\prec}(J)=(\\
&\left(X_{m+k+1}\right) T_{2},\left(X_{m+k+1}, X_{m+k+2}\right) T_{3}, \ldots, \\
&\left.\left(X_{m+k+1}, X_{m+k+2}, \ldots, X_{n-1}\right) T_{n-m-k}\right) .
\end{aligned}
$$

Theorem 3.2. Let \mathcal{G} be as in Theorem 3.1. Then:
(a) $\operatorname{Sym}_{R}\left(I_{m+k+1}(\mathcal{G})\right)$ is Cohen-Macaulay of dimension $n+1$;
(b) $e\left(\operatorname{Sym}_{R}\left(I_{m+k+1}(\mathcal{G})\right)\right)=n-m-k$;
(c) $\operatorname{reg}\left(\operatorname{Sym}_{R}\left(I_{m+k+1}(\mathcal{G})\right)\right)=1$.

Proof. The s-sequence that generates $I_{m+k+1}(\mathcal{G})$ is strong.
(a) It descends from [6, Theorem 4.8].
(b) By [1, Proposition 2.4], it follows that

$$
\mathrm{e}\left(\operatorname{Sym}_{R}\left(I_{m+k+1}(\mathcal{G})\right)\right)=\sum_{i=1}^{n-m-k} \mathrm{e}\left(R / I_{i}\right)
$$

By Proposition 3.5 the annihilator ideals I_{i} are generated by a regular sequence, then $\mathrm{e}\left(R / I_{i}\right)=1$ for $i=2, \ldots, n-m-k$, and $\mathrm{e}(R /(0))=1$. Hence $\mathrm{e}\left(\operatorname{Sym}_{R}\left(I_{m+k+1}(\mathcal{G})\right)\right)=n-m-k$.
(c) By [6, Theorem 4.8], one has

$$
\operatorname{reg}\left(\operatorname{Sym}_{R}\left(I_{m+k+1}(\mathcal{G})\right)\right) \leq \max _{2 \leq j \leq t}\left\{\sum_{i=1}^{j-1} \operatorname{deg}\left(f_{i j}\right)-(j-2)\right\}
$$

where $t=n-m-k$. Then

$$
\begin{aligned}
\operatorname{reg}\left(\operatorname{Sym}_{R}\left(I_{m+k+1}(\mathcal{G})\right)\right) & \leq \max _{2 \leq j \leq t}\left\{\sum_{i=1}^{j-1} \operatorname{deg}\left(X_{m+k+i}\right)-(j-2)\right\} \\
& =(j-1)-(j-2)=1
\end{aligned}
$$

Moreover J is generated by linear forms of degree two. Then

$$
\operatorname{reg}\left(\operatorname{Sym}_{R}\left(I_{m+k+1}(\mathcal{G})\right)\right) \geq 1
$$

It follows that $\operatorname{reg}\left(\operatorname{Sym}_{R}(I(\mathcal{G}))\right)=1$.
Acknowledgments. The paper was carried out when the third author visited the University of Messina. He would like to thank INdAM (Istituto Nazionale di Alta Matematica "F. Severi", Roma, Italy) and the National Natural Science Foundation of China for financial supports, and he is grateful to the Department of Mathematics and Computer Science of the University of Messina for the warmest hospitality.

References

[1] J. Herzog, G. Restuccia, and Z. Tang, s-sequences and symmetric algebras, Manuscripta Math. 104 (2001), no. 4, 479-501.
2] C. Huneke, The theory of d-sequences and powers of ideals, Adv. in Math. 46 (1982), no. 3, 249-279.
[3] M. Imbesi and M. La Barbiera, Edge ideals and connection problems, Commun. Appl. Ind. Math. 1 (2010), no. 2, 127-134.
[4] _, Invariants of symmetric algebras associated to graphs, Turkish J. Math. 36 (2012), no. 3, 345-358.
[5] M. Imbesi, M. La Barbiera, and Z. Tang, On the graphic realization of certain monomial sequences, J. Alg. Appl. 14 (2015), no. 5, 1550073, 9 pages.
[6] Z. Tang, On certain monomial sequences, J. Algebra 282 (2004), no. 2, 831-842.
[7] R. H. Villarreal, Monomial Algebras, Pure and Applied Mathematics, 238, Dekker, 2001.
Maurizio Imbesi
Department of Civil Engineering and Applied Mathematics
University of Messina
Via Nuova Panoramica dello Stretto, Contrada Di Dio, Messina 98166, Italy
E-mail address: imbesim@unime.it
Monica La Barbiera
Department of Mathematics and Computer Science
University of Messina
Viale Ferdinando Stagno d'Alcontres 31, Messina 98166, Italy
E-mail address: monicalb@unime.it
Zhongming Tang
Department of Mathematics
Suzhou University
Suzhou 215006, P. R. China
E-mail address: zmtang@suda.edu.cn

[^0]: Received July 30, 2014; Revised November 25, 2014.
 2010 Mathematics Subject Classification. 13A30, 13C15, 13P10.
 Key words and phrases. s-sequences, d-sequences, generalized graph ideals, symmetric algebras.

