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CYCLIC BRANCHED COVERS OF ALTERNATING KNOTS
AND L-SPACES

MASAKAZU TERAGAITO

ABSTRACT. For any alternating knot, it is known that the double branch-
ed cover of the 3-sphere branched over the knot is an L-space. We show
that the three-fold cyclic branched cover is also an L-space for any genus
one alternating knot.

1. Introduction

An L-space M is a rational homology 3-sphere whose Heegaard Floer ho-
mology I?Z\T(M) is a free abelian group of rank equal to |Hi(M;Z)| ([12]).
Prototypical examples of L-spaces are lens spaces. In recent years, it is recog-
nized that L-spaces form an important class of 3-manifolds. For example, see
(2, 12].

We consider the problem when cyclic branched covers of the 3-sphere branch-
ed over a knot or link is an L-space. Toward this direction, Ozsvath and Szabd
[13] first showed that the double branched cover of any non-split alternating
link (more generally, quasi-alternating link) is an L-space. Peters [15] verified
that for a genus one, 2-bridge knot C|[2m, 2n] (m,n > 0) in Conway’s notation,
the d-fold cyclic branched cover is an L-space for any d > 2, and that for
C[2m,—2n] (m,n > 0), so is the 3-fold cyclic branched cover. For the latter,
the same conclusion still holds for the cases d =4 ([17]) and d =5 ([9]), but it
would be false for sufficiently large d ([10, 18]).

In this paper, we restrict ourselves to alternating knots. As mentioned above,
the double branched cover of any alternating knot is an L-space. Then, is the
3-fold cyclic branched cover an L-space? The answer is positive for genus one,
2-bridge knots. However, it is negative, in general. Let ¥;(K) denote the d-
fold cyclic branched cover of the 3-sphere branched over a knot K. By Baldwin
[1], if K is the trefoil, then ¥4(K) is an L-space if and only if d < 5. This
implies that if K is a (2,m)-torus knot with m > 7, then ¥3(K) is not an
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L-space. Indeed, ¥3(K) is homeomorphic to the m-fold cyclic branched cover
of the trefoil. These (2, m)-torus knots are alternating, but have genus greater
than one. Thus, we will examine the case where alternating knots have genus
one.

Theorem 1.1. Let K be a 3-strand pretzel knot P(2a+1,2b+1,2¢c+ 1), where
a,b,c > 0. Then X3(K) is an L-space.

This immediately implies the following.

Corollary 1.2. Let K be a genus one, alternating knot. Then Y3(K) is an
L-space.

Proof. Suppose that K is a genus one, alternating knot. By [3, Lemma 3.1]
(see also [14]), K is either a 2-bridge knot or a 3-strand pretzel knot P(¢, m,n)
where £, m,n have the same sign. For a genus one, 2-bridge knot, Peters [15]
shows that X3(K) is an L-space. If K = P(¢, m,n), then £, m,n are odd by [6].
Thus Theorem 1.1 gives the conclusion. (I

Hence, the rest of paper is devoted to prove Theorem 1.1. In Section 2,
we describe a link £ whose double branched cover is homeomorphic to X3(K)
for K = P(2a + 1,2b 4+ 1,2¢ + 1). Then Theorem 1.1 immediately follows
from Theorem 2.2, which claims that the link £ is quasi-alternating. Section 3
describes how to calculate determinants of links through Goeritz matrices. In
Section 4, we first argue the case where a = 1. Section 5 completes the proof of
Theorem 2.2 by using an inductive argument. The last section contains some
remarks.

The author would like to thank the referee for helpful comments.

2. Quasi-alternating links

Let K be a pretzel knot P(2a+1,2b+1,2c¢+1) with a,b, ¢ > 0, as illustrated
in Figure 1. Here, each rectangular box consists of vertically right-handed half-
twists of indicated number. This knot has cyclic period two such that its axis is
drawn as the horizontal line. By taking the quotient of this action, the images
of K and the axis give a link kU A in Figure 2. The central two boxes consist of
vertical twists, and the right box consists of horizontal twists. Note that each
component of this link is unknotted. Moreover, it is not a hard task to see that
two components are interchangeable by using the left diagram of Figure 2.

Proposition 2.1. Let L be the link obtained as the lift of A in X3(k), which
is the 3-sphere. Then Xo(L) is homeomorphic to X3(K).

Proof. Let M be the Z3 & Zs branched cover of k U A, corresponding to the
map H;(S® — kU A) — Z3 ® Zs sending positively oriented meridians of k& and
A to (1,0) and (0,1), respectively. Then M is homeomorphic to ¥2(£) and
23 (K). O
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FIGURE 1. A pretzel knot K = P(2a +1,2b+ 1,2¢+ 1) and
twist convention.

FIGURE 3. The link L.

This trick was found in [11, 16]. After exchanging the position of k and
A in Figure 2, we still have the same diagram (with exchanging the labels).
Consider Y3(k). Then the link £ is as illustrated in Figure 3.
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FIGURE 4. Resolutions.

We recall that the notion of quasi-alternating links [13]. The set of quasi-
alternating links QA is the smallest set of links satisfying the following.

e The trivial knot belongs to QA.

e If a link L has a diagram with crossing ¢ such that both of two links
Lo and Ly obtained by smoothing ¢ as in Figure 4 belong to QA, and
det L = det Lo, + det Ly, then L belongs to QA.

As noted in Section 1, the double branched cover of a quasi-alternating link
is an L-space, and any non-split alternating link is quasi-alternating (see [13]).

Theorem 2.2. The link L is quasi-alternating. Hence, Yo(L) is an L-space.

The proof of this theorem is split into Sections 4 and 5.

Proof of Theorem 1.1. By Proposition 2.1, ¥3(K) is homeomorphic to Xo (L),
which is an L-space by Theorem 2.2. O

3. Determinant

To show that the link £ is quasi-alternating, it is necessary to calculate the
determinant of £ and those of various links arisen from £ by resolutions. These
calculations are done through Goeritz matrices (see [4]).

First, consider the checkerboard coloring of the diagram of £ shown in
Figure 3. The unbounded region is white, and this region will be ignored.
The vertical a right-handed half-twists at the upper left yield the white re-
gions a1, ay, .. .,a34—2 numbered from the top. Similarly, the white regions
Q2,Qs,...,03,_1 and asg, ag,...,Q3, appear at the upper center and the up-
per right. The three white regions just above horizontal b twists are numbered
Q3q+1, ¥3a+2, @3q+3 from the left. Finally, the white regions asq 14, @34+5, ¥34+6
are located on the left side of lower twists from the left. Figure 5 exhibits this
numbering convention when a = 1.

Figure 6 shows the convention of sign for each crossing. The (3a+6) x (3a+6)
Goeritz matrix G is defined as follows. For i # j, the (¢, j)-entry of G is the
sum of signs at all the crossings between the regions «; and «;. The (i, 7)-entry
is — > sign(c), where the sum is over all crossings ¢ around the region a;. Then
it is well known that | det G| equals to the determinant of L.
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F1GURE 5. The link £ and the white regions when a = 1.

ol

FIGURE 6. Signs of crossing.

For example, if a = 1, then the Goeritz matrix G is

-1 -1 I
0 —b 0
—I (b+1)I 0 0 —b
—b 0 0 ,
0 0 —b|b+2c+1 —c—1 —c—1
I ) 0 0 —c—1 b+2c+1 —c—1
0 —b 0 —c—1 —c—1 b+2c+1

where I denotes the 3 x 3 identity matrix. Then a direct calculation shows
det G1 = (3bc+6b-+6¢+5)%. Since this value is positive, we have det £ = det G1.

4. The case where a =1

The purpose of this section is to show that the link £ is quasi-alternating
when @ = 1. The link diagram D is illustrated in Figure 5. For i € {1,2,3},
let ¢; be the upper crossing of the white region «;. Let &; € {*,00,0}. We use
the notation L(e1,e2,€3) to express the link obtained from the link diagram D
by performing a resolution of type e; at the crossing c;. Here, if €; = %, then
the crossing ¢; is not changed. If ¢; = oo or 0, then ¢; is split vertically or
horizontally, respectively, as in Figure 4.

Lemma 4.1. (1) L(0,0,%) = L(0,00,0) = P(b+c+1,b+c+1,b+c+1).
Hence these are alternating.
(2) L(0,00,00) = L(00,0,00) = L(00,00,0), and these are alternating.
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FIGURE 7. L(0, 00, 00) is alternating.

FIGURE 8. L(o0, 00, 00).

(3) L(o0,00,00) is quasi-alternating.

Proof. (1) This is obvious from their diagrams.

(2) The equivalences between three links follow from the symmetry. An
alternating diagram of L(0, 0o, c0) is illustrated in Figure 7.

(3) The link L(o0,00,00) is equivalent to one as in Figure 8. This link is
shown to be quasi-alternating by Peters [15]. O

To conclude that £ is quasi-alternating, we need the values of determinants
of some of links L(eq,e2,e3).

Recall that the diagram D (Figure 5) of £ yields the Goeritz matrix G,
described in Section 3. For L(0, *, *) (resp. L(0o, x,*)), its diagram is obtained
from D by splitting the crossing ¢; horizontally (resp. vertically). Then, the
corresponding Goeritz matrix is obtained from G by replacing the (1, 1)-entry
with 0, or deleting the first row and column, respectively. In this way, calcu-
lating determinants of the matrices gives Table 1.

Theorem 4.2. Assume a = 1. Then the link L is quasi-alternating. Further-
more, L(0, x,%) and L(oco, *,*) are quasi-alternating.

Proof. By Lemma 4.1, L(0,00,0) and L(0,00,00) are alternating. As shown
in Table 1, we have det L(0, 00, %) = det L(0, 00,0) + det L(0, 00, 00). Hence
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TABLE 1. Determinants of links.

Link | Determinant

L(0, *, %) 2(b+ ¢+ 1)(3bc + 6b+ 6¢ + 5)
L(co,%,%) | (3bc+ 4b+ e + 3)(3bc + 6b + 6 + 5)

L(0,0, %) 3(b+c+1)*

L(0, 00, *) (b+c+1)(6bc+9b+9c+7)
L(0,0, %) (b+c+1)(6bc+9b+9c+T7)
L(o0,00,%) | (3bc+ 3b+ 3c+ 2)(3bc+ 5b+ 5c+4)
L(0,00,0) 3(b+c+1)?
L(0, 00, 00) 2(b+c+1)(3bc+3b+3c+2)
L(00, 00, 00) (3bc + 3b+ 3c + 2)?

L(0, 00, %) is quasi-alternating. Similarly, because L(0,0, x) is alternating and
det L(0,*,*) = det L(0,0,*) + det L(0, 00, %), L(0,*,x*) is quasi-alternating.
Also, we can verify that L(oo, *, ) is quasi-alternating by the same argument.
Finally, the equation det £ = det L(0, *, x) + det L(co, *, ) implies the conclu-
sion that £ is quasi-alternating. O

5. Induction

As in Section 4, we use the notation L(a: €1,£2,e3) with € € {x,00,0} to
denote the link obtained from £ by performing the resolution of type ¢; at the
crossing ¢;. Here, ¢; is located at the top of the white region «;. See Figure
3. Because we will use an inductive argument, the parameter a is added. In
particular, £ = L(a: *,*,*).

Lemma 5.1. Suppose a > 1.

(1) L(a: 0,0,%) = L(a: 0,00,0) = L(a: 00,0,0) = P(b+c+1,b+c+1,b+
c+ 1), and these are alternating.

(2) L(a: 0,00,00) = L(a: 00,0,00) = L(a: 00,00,0) = L(a — 1: 0, %, ).

(3) L(a: 00,00,00) = L(a — 1: *,%,%).

Proof. These immediately follow from the diagrams. O
Lemma 5.2. For L, L(a: 0,%,%) and L(a: 0o, *, %),

det £ = (3ab + 3bc + 3ca + 3a + 3b + 3¢ + 2)?,
det L(a: 0,%,%) = 2(b+ ¢+ 1)(3ab + 3bc + 3ca + 3a + 3b + 3¢ + 2),
det L(a: 00, *,%) = (3ab+ 3bc + 3ca + 3a + b+ ¢)
- (3ab+ 3bc + 3ca+ 3a+ 3b+ 3c+2).

Hence det £ = det L(a: 0,*, %) 4+ det L(a: oo, *, *).
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Proof. Let G be the (3a+ 6) x (3a + 6) Goeritz matrix obtained from the link
diagram D of L. As in Section 3,

-2 I
I
-2 I
G= I =2I|I O o |,
1
o| Gy
(0]

where [ is the 3 x 3 identity matrix, O is the 3 X 3 zero matrix, and G; is
exactly the 9 x 9 matrix given in Section 3. To calculate its determinant, add
the i-th column multiplied by 1/2 to the (i + 3)-th column for i = 1,2,3. Then
reduce the matrix to a (3a + 3) x (3a + 3) matrix. By repeating this process,
we have det G = (—1)*"ta3 det G/, where G is obtained from G; by replacing
the upper left 3 x 3 block —I with —17. Thus det G = (—1)*~*(3ab + 3bc +
3ca+ 3a+ 3b+ 3¢+ 2)?, and so det £ = (3ab + 3bc + 3ca + 3a + 3b + 3¢ + 2)2.

Consider the diagram of L(a: 0, *,*) obtained from the diagram D (Figure
3) by splitting the crossing ¢; horizontally. The corresponding Goeritz matrix
Gy is the above G with replacing the (1, 1)-entry with —1. Add the first column
to the 4-th column, and the i-th column multiplied by 1/2 to the (i + 3)-th
column for ¢ = 2,3. Then reduce the size as before. Repeating this gives
det Gy = (—1)*"1a? det GY, where GY is obtained from G; by replacing the
(i,1)-entry with 0, —1/a, —1/a, respectively, for i = 1,2,3. Then we have
det L(a: 0,%,%) = 2(b+ ¢+ 1)(3ab + 3bc + 3ca + 3a + 3b + 3¢ + 2).

Finally, the diagram of L(a: oo, *,#) is obtained from D by splitting the
crossing c; vertically. The corresponding Goeritz matrix G is G with deleting
the first column and row. Add the i-th column multiplied by 1/2 to the (i + 3)-
th column for ¢« = 1,2. Then reduce the size of matrix. Repeating this yields
det Goo = (—1)*73(a—1)a? det G}, where G’ is obtained from G by replacing
the (i,4)-entry with —1/(a—1), —1/a, —1/a, respectively, for i = 1,2,3. Then
det L(a: 00, *,%) = (3ab+ 3bc + 3ca + 3a + b + ¢)(3ab + 3bc + 3ca + 3a + 3b +
3c+2). O

By a similar process to the proof of Lemma 5.2, we can calculate determi-
nants of some other links, as in Table 2. We omit the details.

TABLE 2. Determinants of links.

Link | Determinant
L(a: 0,0,x) 3(b+c+1)2
L(a: 0,00, *) (b4 ¢+ 1)(6ab + 6bc + 6ca + 6a + 3b + 3¢+ 1)

L(a: 00,00,%) | (3ab+ 3bc+ 3ca + 3a + 2b+ 2¢+ 1)(3ab + 3bc + 3ca + 3a — 1)
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Lemma 5.3. We have the following equations.
det L(a: 0,%,*) = det L(a: 0,0, x) + det L(a: 0, 0o, ),
det L(a: 0,00, %) = det L(a: 0,00,0) + det L(a: 0,00, 00),
det L(a: oo, *,%) = det L(a: 00,0, ) + det L(a: 0o, 00, *),
det L(a: 00,0, ) = det L(a: 00,0,0) 4+ det L(a: 00,0, 00),
det L(a: 00,00, %) = det L(a: 00,00,0) + det L(a: 0o, 00, 00).

Proof. These immediately follow from Lemmas 5.1, 5.2 and Table 2. (|

Proof of Theorem 2.2. We prove both L(a: 0,*,x) and L(a: 0o, *, *) are quasi-
alternating. Then, £ = L(a : *, %, %) is quasi-alternating by Lemma 5.2.

The proof is done by induction on a. By Theorem 4.2, the claim is true
when a = 1. Suppose a > 1 and that the claim holds for a — 1.

First, consider L(a: 0,x*,%). By the resolution at the crossing ca, we ob-
tain L(a: 0,0,%) and L(a: 0,00,%). For the latter, perform the resolution
at the crossing cs to yield L(a: 0,00,0) and L(a: 0,00,00). Then the claim
that L(a: 0,*, ) is quasi-alternating follows from the facts that L(a: 0,0, %)
and L(a: 0,00,0) are alternating (Lemma 5.1) and L(a: 0,00,00) (= L(a —
1: 0, %, %)) is quasi-alternating by our inductive assumption, coupled with the
equations among determinants (Lemma 5.3). Similarly, we can show that
L(a: oo, *, ) is quasi-alternating. O

6. Remarks

(1) Boyer, Gordon and Watson [2] propose a conjecture that an irreducible
rational homology 3-sphere is an L-space if and only if its fundamental group
is not left-orderable. For K = P(2a+ 1,20+ 1,2¢ + 1), mX2(K) is not left-
orderable, since Yo(K) is a Seifert-fibered L-space ([2]). By Theorem 1.1,
¥3(K) is also an L-space. Hence it is expected that m1X3(K) is not left-
orderable. This is recently confirmed by [7].

(2) In Theorem 1.1, we showed that the 3-fold cyclic branched cover of any
genus one, alternating pretzel knot is an L-space. Consider the genus one,
non-alternating pretzel knot P(—3,5,5). It is known that its double branched
cover is not an L-space ([5, 8]). Thus we may not expect that its 3-fold cyclic
branched cover is an L-space.

(3) Let K be a pretzel knot P(3,3,—n) with n > 3, odd. If n > 3, then
K is quasi-alternating, but P(3,3,—3), which is 946 in the knot table, is not
quasi-alternating (see [5, 8]). Nevertheless, Yo (K) is always an L-space. By a
similar argument to that of this paper, we can show that X3(K) is an L-space,
but the details will be treated elsewhere.

(4) For genus one alternating pretzel knots P(2a+1,2b+ 1,2c¢+ 1), we may
expect that the d-fold cyclic branched cover is an L-space for at least small
d> 4.
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