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ON THE DIOPHANTINE EQUATION (an)x + (bn)y = (cn)z

Mi-Mi Ma and Jian-Dong Wu

Abstract. In 1956, Jeśmanowicz conjectured that, for any positive inte-
ger n and any primitive Pythagorean triple (a, b, c) with a2+ b2 = c2, the
equation (an)x+(bn)y = (cn)z has the unique solution (x, y, z) = (2, 2, 2).
In this paper, under some conditions, we prove the conjecture for the
primitive Pythagorean triples (a, b, c) = (4k2 − 1, 4k, 4k2 + 1).

1. Introduction

Let n be a positive integer and let (a, b, c) be a primitive Pythagorean triple
such that a2+b2 = c2, (a, b, c) = 1 and 2 | b. Clearly, the Diophantine equation

(1.1) (na)x + (nb)y = (nc)z

has the solution (x, y, z) = (2, 2, 2). In 1956, Sierpiński [10] showed there is
no other solutions when n = 1 and (a, b, c) = (3, 4, 5), and Jeśmanowicz [4]
further proved that when n = 1 and (a, b, c) = (5, 12, 13), (7, 24, 25), (9, 40, 41),
(11, 60, 61), then (1.1) has only the solution (x, y, z) = (2, 2, 2). Moreover,
he conjectured that for any positive integer n, (1.1) has the unique solution
(x, y, z) = (2, 2, 2). Since then, many special cases of Jeśmanowicz’ conjecture
have been solved for n = 1. In 1959, Lu [8] proved the conjecture when n = 1
and (a, b, c) = (4k2 − 1, 4k, 4k2+1). Later, Deḿjanenko [1] verified the conjec-
ture if n = 1 and c = b + 1. Recently, Miyazaki [9] showed that Jeśmanowicz’
conjecture is true if n = 1 and a ≡ ±1 (mod b) or c ≡ 1 (mod b). This
result generalized the results of Lu and Deḿjanenko. For more results, see
[5, 6, 11, 12, 13, 15].

When n > 1, only a few results on this conjecture are known. For any
positive integer t with t > 1, let P (t) denote the product of distinct prime
factors of t. In 1998, Deng and Cohen [3] proved that if n > 1, c = b + 1, a is
a prime power and either P (b) | n or P (n) ∤ b, then (1.1) has only the solution
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(x, y, z) = (2, 2, 2). In 1999, Le [7] gave certain necessary conditions for (1.2)
to have positive integer solutions (x, y, z) with (x, y, z) 6= (2, 2, 2).

Recently, some special cases of the Pythagorean triple (a, b, c) = (4k2 −
1, 4k, 4k2 + 1) have been considered. Then (1.1) becomes

(1.2) (n(4k2 − 1))x + (4nk)y = (n(4k2 + 1))z.

For instance, Yang and Tang [16] proved that Jeśmanowicz’ conjecture is true
when k = 2. Tang and Weng [14] proved that Jeśmanowicz’ conjecture is

true for (a, b, c) = (Fk − 2, 22
k−1+1, Fk), where Fk = 22

k

+ 1 is k -th Fermat
number. Deng [2] proved the following results: (1) For k = 2s(1 ≤ s ≤ 4) and
any positive integer n, the only solution of (1.2) is (x, y, z) = (2, 2, 2); (2) For
k = 2s(s ≥ 0) and any positive integer n with P (a) | n or P (n) ∤ a, the only
solution of (1.2) is (x, y, z) = (2, 2, 2).

In this paper, we always assume that (a, b, c) = (4k2 − 1, 4k, 4k2 + 1). The
following results are proved.

Theorem 1.1. Suppose that the positive integer n is such that P (a) | n. Then

the only solution of (1.2) is (x, y, z) = (2, 2, 2).

Theorem 1.2. Let k = pα, where α ≥ 0 and p is a prime with p ≡ −1
(mod 4). Suppose that n is a positive integer with P (n) ∤ a. Then the only

solution of (1.2) is (x, y, z) = (2, 2, 2).

2. Lemmas

Lemma 2.1 ([8, Theorem]). Let n = 1. Then (1.2) has the only positive

integer solution (x, y, z) = (2, 2, 2).

Lemma 2.2 ([2, Corollary 2.4]). Let (a, b, c) be any primitive Pythagorean

triple such that the Diophantine equation ax + by = cz has the only positive

integer solution (x, y, z) = (2, 2, 2). If (x, y, z) is a solution of (1.2) with

(x, y, z) 6= (2, 2, 2), then one of the following conditions is satisfied:
(1) x > z > y and P (n) | b;
(2) y > z > x and P (n) | a.

Lemma 2.3. Suppose that the positive integer n is such that P (n) | b. If

(x, y, z) is a solution of (1.2) with (x, y, z) 6= (2, 2, 2) and 2 | z, then by

nz−y is

not a square number.

Proof. By Lemma 2.2, we have x > z > y. Assume that by

nz−y = d2 is a square
number. By (1.2), we have

by

nz−y
= cz − ax · nx−z.

Write z = 2z1. Then

ax · nx−z = cz − d2 = (cz1 − d)(cz1 + d).
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Noting that a is odd and

(cz1 − d, cz1 + d) ≤ (2cz1 , 2d) ≤ (2cz1 , 2by) = 2,

we have a = a1a2 with gcd(a1, a2) = 1, ax1 | cz1 + d and ax2 | cz1 − d. Let
ai = max{a1, a2}. By a1a2 = a = (2k− 1)(2k + 1), we have ai ≥ 2k+ 1. Thus

axi > (a2i )
z1 ≥ (4k2 + 1 + 4k)z1 = (c+ b)z1

≥ cz1 + bz1 > cz1 + b
y

2 ≥ cz1 + d > cz1 − d,

a contradiction. �

3. Proof of Theorem 1.1

Since P (a) | n and (a, b) = 1, it follows that P (n) ∤ b. By Lemma 2.2, we
have y > z > x and P (n) | a. Thus P (n) = P (a). By (1.2), we have

(3.1) ax = nz−x(cz − by · ny−z).

By P (n) = P (a), we have nz−x = ax. It follows that

(3.2) by · ny−z = cz − 1.

Let k = 2l · k1, 2 ∤ k1. Noting that a = 4k2 − 1, b = 4k, c = 4k2 + 1, we have
(3.3)

(2l+2 ·k1)
y ·ny−z = (22l+2 ·k21+1)z−1 = z ·22l+2 ·k21+

z(z − 1)

2
(22l+2 ·k21)

2+· · · .

By x < z < y, we have y ≥ 2. The power of 2 in (2l+2 · k1)
y · ny−z is

(l + 2)y ≥ 2l + 4. By (3.3), we have 2 | z. Write z = 2z1. It follows that

by · ny−z =
(

cz1 − 1
)(

cz1 + 1
)

.

Note that (cz1 + 1, by) = 2, we have by

2 | cz1 − 1. However,

by

2
>

b2z1

2
=

(c− a)z1(c+ a)z1

2
≥ cz1 + az1 > cz1 − 1,

a contradiction.

4. Proof of Theorem 1.2

We suppose that (1.2) has a solution (x, y, z) 6= (2, 2, 2), and will observe
that this leads to a contradiction. By Lemma 2.1, we may assume that n ≥ 2.

By P (n) ∤ a and Lemma 2.2, we have y < z < x and P (n) | b. Write
n = 2r · ps, where r + s ≥ 1. By (1.2), we have

(4.1) by = nz−y(cz − ax · nx−z),

or equally

(4.2) 22y ·pαy = 2r(z−y) ·ps(z−y)
(

(4 ·p2α+1)z−(4 ·p2α−1)x ·2r(x−z) ·ps(x−z)
)

.

Case 1. r ≥ 1, s = 0. Then n = 2r. By (4.2),

22y · pαy = 2r(z−y)
(

(4 · p2α + 1)z − (4 · p2α − 1)x · 2r(x−z)
)

.
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So 2y = r(z − y) and

(4.3) pαy = (4 · p2α + 1)z − (4 · p2α − 1)x · 2r(x−z).

If r(x − z) ≥ 3, by (4.3), we have (−1)αy ≡ 1 (mod 4). Thus 2 | αy. Also by
(4.3), we have 5z ≡ 1 (mod 8). Hence 2 | z. By Lemma 2.3, this is impossible.
Then r(x − z) = 1 or 2. If αy ≥ 2, then by (4.3), we have (−1)x · 2r(x−z) ≡ 1
(mod p2). Note that p ≥ 3, this is impossible. Then αy = 1. We have
α = 1, y = 1. It follows that

(4.4) (4 · p2 − 1)x · 2r(x−z) = (4 · p2 + 1)z − p.

We have (−1)x · 2r(x−z) ≡ 1 (mod p). Note that r(x − z) = 1, 2 and p ≡ −1
(mod 4), we have p = 3. By (4.4), we get

(4.5) 35x · 2r(x−z) = 37z − 3.

If r(x − z) = 1, then r = 1, x− z = 1. Note that 2y = r(z − y) and y = 1,
we have z = 3y = 3 and x = 4. Then 3001250 = 354 · 2 = 373− 3 = 50650, this
is impossible.

If r(x−z) = 2, then r = 2, x−z = 1 or r = 1, x−z = 2. If r = 2, x−z = 1,
then we have z = 2y = 2 and x = 3. By (4.5), we have 171500 = 353 · 22 =
372− 3 = 1366, this is impossible. If r = 1, x− z = 2, we have z = 3y = 3 and
x = 5. It follows that 355 · 22 = 373 − 3, this is impossible.

Case 2. r = 0, s ≥ 1. Then n = ps. By (4.2),

22y · pαy = ps(z−y)
(

(4 · p2α + 1)z − (4 · p2α − 1)x · ps(x−z)
)

.

So αy = s(z − y) and

(4.6) 22y = (4 · p2α + 1)z − (4 · p2α − 1)x · ps(x−z).

By (4.6), we have (−1)x+s(x−z) ≡ 1 (mod 4). Then 2 | x+ s(x − z). If y = 1,
then

(4.7) 4 = (4 · p2α + 1)z − (4 · p2α − 1)x · ps(x−z).

By (4.7), we have 4 ≡ 1 (mod p), so p = 3. We have 5z−3x+s(x−z) ≡ 5z−1 ≡ 4
(mod 8), so 2 ∤ z. Note that αy = s(z − y), we have α = s(z − 1), so 2 | α.
By (4.7), we have 2z ≡ 4 (mod 2 · 3α + 1). Let (∗

∗
) denote the Jacobi symbol.

Note that 2 · 3α + 1 ≡ 3 (mod 8), we have

−1 =
( 2

2 · 3α + 1

)

=
( 2

2 · 3α + 1

)z
=

( 4

2 · 3α + 1

)

= 1,

a contradiction. So y ≥ 2. If p = 3, then, by (4.6), we have 5z ≡ 3x+s(x−z) ≡ 1
(mod 8). Thus 2 | z. By Lemma 2.3, this is impossible. If p > 3, by (4.6), we
have (−1)z ≡ 1 (mod 3). So 2 | z. By Lemma 2.3, this is impossible.

Case 3. r ≥ 1, s ≥ 1. It is obviously that 2p ∤ (4 · p2α+1)z − (4 · p2α− 1)x ·
2r(x−z) · ps(x−z). By (4.2), we have 2y = r(z − y), αy = s(z − y) and

(4.8) 1 = (4 · p2α + 1)z − (4 · p2α − 1)x · 2r(x−z) · ps(x−z),
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or equally

(4 · p2α − 1)x · 2r(x−z) · ps(x−z) = (4 · p2α + 1)z − 1.

So αr = 2s. Note that p2α | (4 · p2α + 1)z − 1, we have s(x− z) ≥ 2α. It turns
out that rs(x − z) ≥ 2αr = 4s, i.e., r(x − z) ≥ 4. By (4.8), we have 5z ≡ 1
(mod 8), so 2 | z. By Lemma 2.3, this is impossible.

This completes the proof of Theorem 1.2.
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[1] Deḿjanenko, On Jeśmanowicz’ problem for Pythagorean numbers, Izv. Vyss. Ucebn.
Zaved. Mat. 48 (1965), no. 5, 52–56.

[2] M. J. Deng, A note on the Diophantine equation (na)x + (nb)y = (nc)z , Bull. Austral.
Math. Soc. 89 (2014), no. 2, 316–321.

[3] M. J. Deng and G. L. Cohen, On the conjecture of Jeśmanowicz concerning Pythagorean
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