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DERIVATIONS ON CONVOLUTION ALGEBRAS

MOHAMMAD JAVAD MEHDIPOUR AND ZAHRA SAEEDI

ABSTRACT. In this paper, we investigate derivations on the noncommuta-
tive Banach algebra L§°(w)* equipped with an Arens product. As a main
result, we prove the Singer-Wermer conjecture for the noncommutative
Banach algebra L§°(w)*. We then show that a derivation on L§°(w)* is
continuous if and only if its restriction to rad(L§° (w)*) is continuous. We
also prove that there is no nonzero centralizing derivation on Lg°(w)*.
Finally, we prove that the space of all inner derivations of L§°(w)* is
continuously homomorphic to the space L (w)* /L1 (w).

1. Introduction

Let w be a weight function on RT = [0,00), i.e., a continuous function
w:RT — [1,00) so that w(0) = 1 and

w(z +y) < w() w(y)

for all x,y € R*. Let also L'(w) be the Banach space of all Lebesgue measur-
able functions ¢ on R* such that

= / |p(z)| w(z) de < oo.
0
Then L!(w) with the norm |- ||1, ., and the convolution product “+” defined by
sx0t@) = [ Swle -9 dy (weRY)

is a Banach algebra. We also assume that L{°(w) is the Banach space of all
Lebesgue measurable functions f on R such that

X (,00) oo = €88 SUD{f ()X (2,00) () /w(y) 1 y € RT} =0
as  — 0o. For every f € L(w) and ¢ € L (w), the function f o ¢ defined by

/fx—i—y sy)dy (v €RY)
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is an element in Cp(w), the Banach space of all continuous complex-valued
functions f on R such that f/w vanishes at infinity; see [10]. So, we may
endow the dual of L3°(w), represented by Lg°(w)*, with the first Arens product
“” defined as follows. For any ¢ in L'(w), f in L (w) and m,n in L§°(w)*,
the element m - n is defined by

(m-n, f)=(m,nf),
where (nf, @) = (n, fog). Then L5°(w)* with this product is a Banach algebra;
see [10]; see also Lau and Pym [8] for the locally compact group case. Note
that since ¢ -1 = ¢ x 1) for ¢,9 € L (w), L'(w) may be regarded as a subspace
of LP(w)* and then L!(w) is a closed ideal in L5°(w)* [10].

Since w(x) > 1 for all z € RT, the Banach algebra L!(w) has a bounded
approximate identity, for example the sequence {ix(o,1/:)}ien is one of them;
see [14]. We denote by A(LF(w)*) the set of all weak*—cluster points of an
approximate identity in L'(w) bounded by one. Note that for any n € L& (w)*
and ¢ € L'(w), the maps

m—m-n and m—¢-m

are weak*-weak* continuous on L3 (w)*. Hence if u € A(L§°(w)*), then u is a
mixed identity with norm one, that is, ||ul]| =1 and u - ¢ = ¢ - u = ¢ for all
¢ € L'(w). Goldstine’s theorem implies that every mixed identity for L§°(w)*
is a right identity for L§°(w)*. Also, note that if u is a right identity for L§°(w)*
and (e,) is a bounded net in L!(w) such that e, — u in the weak* topology of
LE°(w)*, then for every ¢ € L(w), we have

¢-ea—

in the weak topology. Passing to convex combinations, we can suppose that
¢ - eq — ¢ in the norm topology. This together with the fact that L'(w)
is a commutative Banach algebra shows that (e,) is a bounded approximate
identity for L'(w). Thus u € A(L§(w)*). These facts can be summarized by
saying that v € A(LF(w)*) if and only if it is a right identity for L§°(w)* with
norm one or, equivalently, v is a mixed identity with norm one.

By M (w) we mean the Banach space of all complex regular Borel measures
1 on R such that

lullo = [ " we) dlul() < oo,

where |u| denotes the total variation of u. By the usual way, the Banach
space M (w) can be identified with the dual of Cy(w). So, we may define the
convolution multiplication “x” by

(Wxv,g) = /Ooo /OOO g(z +y) du(z) dv(y)

for all y,v € M(w) and g € Cy(w). Then the Banach space M (w) with the
convolution product * and the norm || - ||, is a commutative Banach algebra.
Let us remark from [11, Theorem 3.6(i) and Example 4.13(c)] that if u is an
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element of A(L§°(w)*), then u - L (w)* is isometrically isomorphic to M (w).
This implies that u- L§®(w)* is commutative and so for every k,m,n € L (w)*

(1) k-m-n=k-u-m-u-n=%k-u-n-u-m==k-n-m.

Let rAnn(LF (w)*) be the set of all r € L (w)* such that L§°(w)* - r = {0}.
For every m € L& (w)*, f € L (w) and ¢ € L(w), we have

(¢-m, f)=(o,mf) =(mf,¢) = (m, fod).
Also it is well-known from [11, Proposition 2.3(b) and Example 4.13(c)] that
L3 () 0 ' (1) = Colw).
These facts show that
rAnn(Lg°(w)*) = Co(w) " == {r € LF(w)* : r|cy(w) = 0}

Let us recall from [11, Theorem 3.6(iv) and Example 4.13(c)] that if u €
A(LF(w)*), then the Banach space L (w)* is the Banach space direct sum
of u- LF(w)* and rAnn(L§° (w)*).

Let A be a Banach algebra; a linear mapping D : A — A is called a derivation
if

D(ab) = D(a)b+ aD(b).

In 1955, Singer and Wermer [17] proved that every continuous derivation on a
commutative Banach algebra maps the algebra into its radical. They conjec-
tured that the continuity requirement for the derivations is unnecessary and
can be removed. Johnson [5] showed the automatic continuity of derivations of
commutative semisimple Banach algebras and so the conjecture can be estab-
lished for these types of Banach algebras. Finally in 1988, Thomas [19] gave
an affirmative answer to the Singer-Wermer conjecture. Obviously, because of
inner derivations, this result does not remain valid for noncommutative Banach
algebras. There are, however, various noncommutative versions of the Singer-
Wermer theorem for Banach algebras [11, 12, 16]. For example, Sinclair [16]
proved that every continuous derivation of a Banach algebra A leaves primitive
ideals of A invariant. Mathieu and Runde [12] gave another noncommutative
extension of the Singer-Wermer theorem: Every centralizing derivation on a
noncommutative Banach algebra has its image in the radical of algebra; see
Posner [15] for the noncommutative version of the Singer-Wermer theorem for
prime rings; see also [1, 6, 7, 20] for range inclusion results for derivations on
not necessarily commutative Banach algebras.

Isik and et al. [4] gave some interesting results on the structure of the
Banach algebra L>°(G)*, for an infinite compact group G. Lau and Pym [8]
introduced the subspace L3°(G) of L*°(G) consisting of bounded measurable
functions on locally compact group G that vanish at infinity. For a locally
compact group, they proved most of the results obtained in [4] for L§°(G)*. In
fact, they introduced a sensible replacement for L*°(G), when G is compact.
Maghsoudi and et al. [10] have introduced and studied a semigroup analogue
of L (G)*. They showed that some aspects of the theory of L>°(G)* when G is
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a compact group hold for L§°(w)*. Other aspects of analysis on these Banach
algebras have been studied by many authors; see for example, [9, 13, 18].

Since TAnn(L (w)*) = Co(w)*, an easy application of the Hahn-Banach’s
theorem shows that there is a non-zero element r € rAnn(L§®(w)*); see for
example [2, Corollary 6.8 of Chapter 3]. Hence for every u € A(LF(w)*), we
have u-r =0, r-u =r and

r- Lg°(w)* - r = {0}.

These relations imply that L§®(w)* is a noncommutative Banach algebra. It
also follows that Lg°(w)* is not a prime ring. Therefore, we cannot apply the
well-known results concerning derivations of commutative Banach algebra and
derivation of prime rings to L3 (w)*. It is natural to ask whether the results
hold for Li°(w)*. In this paper we investigate the truth of these results for
L& (w)*.

This paper is organized as follows: In Section 2, we prove that the range of
every derivation on the noncommutative Banach algebra L3°(w)* is contained in
the radical of L§°(w)* and that every derivation on L§°(w)* leaves the primitive
ideals of L3°(w)* invariant. We also show that a derivation on L (w)* is
continuous if and only if its restriction to rad(L§° (w)*) is continuous. In Section
3, we study centralizing derivations and inner derivations of L3°(w)*. We show
that there is no nonzero centralizing derivation on L3 (w)* and prove that the
space of all inner derivations of L§°(w)* is continuously homomorphic to the
space L (w)* /L (w).

2. The range and automatic continuity of derivations

Let rad(Ly° (w)*) denote the radical of Banach algebra Lg°(w)*. The main
result of this paper is the following theorem.

Theorem 2.1. Let w be a weight function on RY and D be a derivation on
L& (w)*. Then D maps LE (w)* into rad(L§°(w)*) = rAnn(LP (w)*).

Proof. First, note that every element of rAnn(L{°(w)*) is nilpotent. So
rAnn(Lg° (w)*) C rad(Lg°(w)™).

Since w(z) > 1 for all x € RT, the Banach algebra M (w) is semisimple; see
for example [3]. This together with the fact that M (w) is isometrically isomor-
phism to L3P (w)*/rAnn(L5°(w))* yields that

rad(Ly° (w)*)/rAnn(L° (w)*) = 0.
It follows that rad(L (w)*) is contained in rAnn(Lg°(w)*). Thus
rad(Lg° (w)*) = rAnn(Lg°(w)™).
For every k € L§°(w)* and r € rAnn(L§°(w)*) we have
k-D(r)y=D(k-r)—D(k)-r=0.
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Hence D maps rAnn(Lg° (w)*) into rAnn(Lg° (w)*), which implies that the func-
tion
D : LE(w)*/rAnn(L° (w)*) — L (w)*/rAnn(L° (w)*)
defined by
D(m +rAnn(LP (w)*)) = D(m) + rAnn(L5° (w)*)
is well defined. It is easy to see that D is a derivation on semisimple and
commutative Banach algebra L§°(w)*/rAnn(L{°(w)*). Thus

Di(m + rAnn(Lg(w)")) = 0
for all m € L§°(w)*. Hence D(m) is an element in rAnn(L§°(w)*). That is,
D(Lg* (w)") € rAnn(Lg” (w)"),
as claimed. 0
As an immediate consequence of this theorem we have the following result.

Corollary 2.2. Let w be a weight function on RT. Then the following state-
ments hold:

* invariant.

(i) Any derivation on LF (w)* leaves primitive ideals of L (w)
(ii) The composition of two derivations on L (w)* is always a derivation

on L (w)*.

Let us recall that a linear mapping T' : L§°(w)* — L§°(w)* is called spectrally
bounded if there exists o > 0 such that 7(T(m)) < ar(m) for all m € L§°(w)*,
where 7(-) stands for the spectral radius.

Corollary 2.3. Let w be a weight function on RY. Then the following state-
ments hold:

(i) Any derivation on L§°(w)* is spectrally bounded.

(ii) Zero is the only weak*-weak® continuous derivation on L (w)*.

*

Proof. (i) Let D be a derivation on L (w)*. If m € L§°(w)*, then by Theorem
2.1, D(m)* = 0 for all i > 2. Hence

r(D(m)) = lim || D(m)"|"/* = 0.
11— 00
So D is spectrally bounded.
(ii) Let D be a weak*-weak* continuous derivation on L§°(w)* and ¢ €

L'(w). Invoke Cohen’s factorization theorem to conclude that ¢ = ¢1 * ¢ for
some ¢1,ds € L' (w). By definition of rAnn(L (w)*), we have

(2) L' (w) - rAnn(Lg°(w)*) = {0}.

Proposition 2.3 of [10] together with the fact that rAnn(L5°(w)*) = Co(w)*
implies that

(3) rAnn(Lg° (w)*) - Ll(w) = {0}.
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From (2) and (3) it follows that

D(¢) = D(¢1 % ¢2) = D(¢1) - 2 + ¢1 - D(¢2) = 0.
This shows that D(L!(w)) = {0}. From weak* density of L!(w) in L (w)* we
infer that D = 0. Hence (ii) holds. O

We conclude the section by the following result.

Theorem 2.4. Let w be a weight function on RY and D be a derivation on

L (w)*. Then D is continuous if and only if Dlrad(Lee(w)~) S continuous.

Proof. Choose u € A(L5°(w)*). Let (u-mq)aca be a net in LG (w)* such that
u-mg =0 and D(u-my) = m e L (w)"

in the norm topology of L§°(w)*. Suppose that m # 0 and ¢ € N. Choose
ap € A such that | D(u-mg)|| > ||m]||/2 and ||u - me]|| < ||m]|/7 for all a > ap.
In view of Theorem 2.1, we have

[mll/2 < [ID(u-ma)|| = [[D(w) - ma|
=[[D(u) - u-mall < [D(w)|[[u-mal
< |[[ID)[l[mll/i.
Hence ||D(u)|| > i/2 for all i € N. This contradiction shows that m = 0. By

closed graph theorem, D|,,. L (w)~ 18 continuous. Thus there exists My > 0 such
that for every m € L (w)*

[D(u-m)|| < Millw-mi.
Now, let D|rad(Lg°(w)*) be continuous. Then there exists Ms > 0 such that
ID(r)|| < My ||r|| for all r € rad(LF (w)*). For any m € L (w)* set

rm=m—u-m € rad(Ly (w)*).
Then
|Dm)| = D~ m) + Dir)|

< ID(- m)]| + D)

< My lu-m|| + My [m —u-m||

< My [|m]| + 2Mz ||Im|

= (M + 2M3) ||m||.

Therefore, D is bounded. The converse is clear. [l

3. Centralizing derivations and inner derivations

In the sequel, Z(L° (w)*) denotes the center of Li°(w)* and we write [m,n| =
m-n—n-m for all m,n € L (w)*.

Theorem 3.1. Let w be a weight function on RY and D be a derivation on
L& (w)*. Then the following assertions are equivalent.
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(a) D

(b) There e:msts i € N such that D(m*) = 0 for all m € L§°(w)*.

(¢c) There exists i € N such that D(m") € Z(L§°(w)*) for all m € L§°(w)*.

(d) There exists i € N such that [D(m),m] € Z(LP(w)*) for all m €
L (w)*.

(e) There exists i € N such that [D(m),m'] =0 for all m € L (w)*.

Y
)

m
m

Proof. The implications (a)= (b)= (c) are clear. It follows from Theorem 2.1
that

[D(m),m"™'] = D(m)-m'"™" —m'~'. D(m) = D(m").
Hence (c)= (d). Let us show that (d)= (e) and (e)= (a). Assume that (d)
holds. Choose u € A(LJ°(w)*). Then

[D(m),m"] = [D(m),m] - u = u - [D(m),m’]
:u-D(m)-mi:O.
So, we obtain (e). To complete the proof, suppose that there is i € N such that
[D(m),m!] =0 for all m € L§°(w)*. Fix u € A(LF(w)*). Then
D(u) = [D(u),u'] = 0.
For every r € rAnn(LJ (w)*), we have
0=[D(r+u),(r+ U)i] = [D(r), (r + u)']
=Dr)(r" +er ut eor 2w 4 a4 ut) = D(r)
for some ¢1,...,¢;—1 > 0. Now, let m € L (w)*. Then
rm =m—u-m € rAnn(Lg"(w)").
Thus
D(m) = D(u-m)+ D(rpm) = D(u) - m+ D(ry,) = 0.
Therefore, D = 0. So (e) implies (a). O
A mapping T : L°(w)* — L (w)* is called centralizing if [T'(m),m] €
Z(LF(w)*) for all m € L§°(w)*; in a special case when [T'(m), m] = 0 for all
m € L§°(w)*, T is called commuting.

Corollary 3.2. Let w be a weight function on RT. Then the following state-
ments hold:

(i) Zero is the only centralizing derivation on L (w)*.

(ii) Zero is the only commuting derivation on L (w)*.

A derivation D on L (w)* is said to be inner if there exists ng € L§°(w)*
such that D(m) = [m, ng)] for all m € L§°(w)*.

Proposition 3.3. Let w be a weight function on RT and D be a derivation on
L& (w)*. Then the following assertions are equivalent.

(a) D is inner.
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(b) There exists ng € L (w)* such that D(m?) = [m?,ng] for all m €
Ly (w)".

(c) There exists ng € LF (w)* such that the mapping m — D(m) + ng - m
1§ commuting.

(d) There exists ng € L (w)* such that the mapping m — D(m) +ng - m
s centralizing.

Proof. It is obvious that (a) implies (b) and that (c) implies (d). Suppose that
there is ng € L& (w)* such that D(m?) = [m?,ng) for all m € L (w)*, then by
(1) we have
[D(m) +ng -m,m] = D(m) -m+ng-m? —m-ng-m
= D(m?) +no-m?> —m-ng-m

2 2

= (m?-np —ngp-m?) +ng-m*—m?-ng
=0.
This shows that the mapping m +— D(m)+ng-m is commuting. So (b) implies
(c). Finally, let ng € LZF (w)*. We define D : LF(w)* — Li°(w)* by
D(m) = D(m) — [m, no).
It is plain that D is a derivation on L3 (w)*. Tt follows from Theorem 2.1 that
[D(m),m] = D(m) - m = [D(m) + ng - m, m].

If (d) holds, then D is a centralizing derivation. So D(m) = 0 by Corollary
3.2. This shows that
D(m) = [m,no]
for all m € L§°(w)*. That is, D is inner. Hence (d) implies (a). O
In the following, let InnD(L§°(w)*) be the space of all inner derivations on
Le(w)*.

Theorem 3.4. Let w be a weight function on RT. Then the mapping T :
m + LY (w) — I, is a continuous homomorphism from L (w)*/L'(w) onto
Inn D(LP (w)*), where I,,(n) = [n,m] for all m € LF(w)*. Furthermore, T is
an isomorphism if and only if Z(L3°(w)*) = LY (w).

Proof. First note that if u € A(LJ°(w)*), then w is a mixed identity and u -
L°(w)* is commutative. Let m € L (w)* and ¢ € L!(w). Then

b-m=u-d-u-m=u-m-u-é

(4) =u-m-¢.
Since L'(w) is an ideal in L (w)* and u is a mixed identity, we get
(5) u-m-¢=m-o.

From (4) and (5) we see that
(6) p-m=m-o.
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So the mapping Z is well defined. Obviously, Z is a homomorphism. To see
that Z is continuous, let n € Lg°(w)* and ¢ € L'(w). Then

1T () = - =]
< fln-m—o-nl + |6 n—m-n|
< ol I — ¢l + 16 = m| |
= 2| m - 4]

for all m € L§°(w)*. This implies that
IZ(m + LY (W)l = 1 Zm]| < 2[lm — ¢
for all m € LP(w)* and ¢ € L' (w). Hence
IZ(m + L (W)l < 2inf{[lm — ¢] : ¢ € L' (w)}
=2inf{[[m+ ¢ : ¢ € L'(w)} =2 [m + L' (w)]I.

Therefore, 7 is continuous.

Now, let m € Z(L5°(w)*). Then Z,, = 0 on L (w)*. Thus Z(m+L' (w)) = 0.
It follows that m € L'(w) if Z is an isomorphism. This together with (6) shows
that

Z(LE (w)*) = L' (w).
To complete the proof, let m € L (w)* and Z(m + L'(w)) = 0. Then
Inn)=n-m—m-n=0

for all n € LP(w)*. This shows that m € Z(L°(w)*). So, if Z(L°(w)*) =
LY (w), then m € L'(w) and so Z is an isomorphism. O
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