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DERIVATIONS ON CONVOLUTION ALGEBRAS

Mohammad Javad Mehdipour and Zahra Saeedi

Abstract. In this paper, we investigate derivations on the noncommuta-
tive Banach algebra L∞

0 (ω)∗ equipped with an Arens product. As a main
result, we prove the Singer-Wermer conjecture for the noncommutative
Banach algebra L∞

0 (ω)∗ . We then show that a derivation on L∞
0 (ω)∗ is

continuous if and only if its restriction to rad(L∞
0 (ω)∗) is continuous. We

also prove that there is no nonzero centralizing derivation on L∞
0 (ω)∗.

Finally, we prove that the space of all inner derivations of L∞
0 (ω)∗ is

continuously homomorphic to the space L∞
0 (ω)∗/L1(ω).

1. Introduction

Let ω be a weight function on R
+ = [0,∞), i.e., a continuous function

ω : R+ → [1,∞) so that ω(0) = 1 and

w(x + y) ≤ w(x) w(y)

for all x, y ∈ R
+. Let also L1(ω) be the Banach space of all Lebesgue measur-

able functions φ on R
+ such that

‖φ‖1, ω =

∫ ∞

0

|φ(x)| w(x) dx <∞.

Then L1(ω) with the norm ‖ · ‖1, ω and the convolution product “∗” defined by

φ ∗ ψ(x) =

∫ x

0

φ(y)ψ(x − y) dy (x ∈ R
+)

is a Banach algebra. We also assume that L∞
0 (ω) is the Banach space of all

Lebesgue measurable functions f on R
+ such that

‖fχ(x,∞)‖∞,ω = ess sup{f(y)χ(x,∞)(y)/ω(y) : y ∈ R
+} → 0

as x→ ∞. For every f ∈ L∞
0 (ω) and φ ∈ L1(ω), the function f ◦ φ defined by

f ◦ φ(x) =

∫ ∞

0

f(x+ y)φ(y) dy (x ∈ R
+)
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is an element in C0(ω), the Banach space of all continuous complex-valued
functions f on R

+ such that f/ω vanishes at infinity; see [10]. So, we may
endow the dual of L∞

0 (ω), represented by L∞
0 (ω)∗, with the first Arens product

“·” defined as follows. For any φ in L1(ω), f in L∞
0 (ω) and m,n in L∞

0 (ω)∗,
the element m · n is defined by

〈m · n, f〉 = 〈m,nf〉,

where 〈nf, φ〉 = 〈n, f ◦φ〉. Then L∞
0 (ω)∗ with this product is a Banach algebra;

see [10]; see also Lau and Pym [8] for the locally compact group case. Note
that since φ ·ψ = φ ∗ψ for φ, ψ ∈ L1(ω), L1(ω) may be regarded as a subspace
of L∞

0 (ω)∗ and then L1(ω) is a closed ideal in L∞
0 (ω)∗ [10].

Since ω(x) ≥ 1 for all x ∈ R
+, the Banach algebra L1(ω) has a bounded

approximate identity, for example the sequence {iχ(0,1/i)}i∈N is one of them;
see [14]. We denote by Λ(L∞

0 (ω)∗) the set of all weak∗−cluster points of an
approximate identity in L1(ω) bounded by one. Note that for any n ∈ L∞

0 (ω)∗

and φ ∈ L1(ω), the maps

m 7→ m · n and m 7→ φ ·m

are weak∗-weak∗ continuous on L∞
0 (ω)∗. Hence if u ∈ Λ(L∞

0 (ω)∗), then u is a
mixed identity with norm one, that is, ‖u‖ = 1 and u · φ = φ · u = φ for all
φ ∈ L1(ω). Goldstine’s theorem implies that every mixed identity for L∞

0 (ω)∗

is a right identity for L∞
0 (ω)∗. Also, note that if u is a right identity for L∞

0 (ω)∗

and (eα) is a bounded net in L1(ω) such that eα → u in the weak∗ topology of
L∞
0 (ω)∗, then for every φ ∈ L1(ω), we have

φ · eα → φ

in the weak topology. Passing to convex combinations, we can suppose that
φ · eα → φ in the norm topology. This together with the fact that L1(ω)
is a commutative Banach algebra shows that (eα) is a bounded approximate
identity for L1(ω). Thus u ∈ Λ(L∞

0 (ω)∗). These facts can be summarized by
saying that u ∈ Λ(L∞

0 (ω)∗) if and only if it is a right identity for L∞
0 (ω)∗ with

norm one or, equivalently, u is a mixed identity with norm one.
By M(ω) we mean the Banach space of all complex regular Borel measures

µ on R
+ such that

‖µ‖ω =

∫ ∞

0

ω(x) d|µ|(x) <∞,

where |µ| denotes the total variation of µ. By the usual way, the Banach
space M(ω) can be identified with the dual of C0(ω). So, we may define the
convolution multiplication “∗” by

〈µ ∗ ν, g〉 =

∫ ∞

0

∫ ∞

0

g(x+ y) dµ(x) dν(y)

for all µ, ν ∈ M(ω) and g ∈ C0(ω). Then the Banach space M(ω) with the
convolution product ∗ and the norm ‖ · ‖ω is a commutative Banach algebra.
Let us remark from [11, Theorem 3.6(i) and Example 4.13(c)] that if u is an
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element of Λ(L∞
0 (ω)∗), then u · L∞

0 (ω)∗ is isometrically isomorphic to M(ω).
This implies that u ·L∞

0 (ω)∗ is commutative and so for every k,m, n ∈ L∞
0 (ω)∗

(1) k ·m · n = k · u ·m · u · n = k · u · n · u ·m = k · n ·m.

Let rAnn(L∞
0 (ω)∗) be the set of all r ∈ L∞

0 (ω)∗ such that L∞
0 (ω)∗ · r = {0}.

For every m ∈ L∞
0 (ω)∗, f ∈ L∞

0 (ω) and φ ∈ L1(ω), we have

〈φ ·m, f〉 = 〈φ,mf〉 = 〈mf, φ〉 = 〈m, f ◦ φ〉.

Also it is well-known from [11, Proposition 2.3(b) and Example 4.13(c)] that

L∞
0 (ω) ◦ L1(ω) = C0(ω).

These facts show that

rAnn(L∞
0 (ω)∗) = C0(ω)

⊥ := {r ∈ L∞
0 (ω)∗ : r|C0(ω) = 0}.

Let us recall from [11, Theorem 3.6(iv) and Example 4.13(c)] that if u ∈
Λ(L∞

0 (ω)∗), then the Banach space L∞
0 (ω)∗ is the Banach space direct sum

of u · L∞
0 (ω)∗ and rAnn(L∞

0 (ω)∗).
Let A be a Banach algebra; a linear mappingD : A→ A is called a derivation

if
D(ab) = D(a)b+ aD(b).

In 1955, Singer and Wermer [17] proved that every continuous derivation on a
commutative Banach algebra maps the algebra into its radical. They conjec-
tured that the continuity requirement for the derivations is unnecessary and
can be removed. Johnson [5] showed the automatic continuity of derivations of
commutative semisimple Banach algebras and so the conjecture can be estab-
lished for these types of Banach algebras. Finally in 1988, Thomas [19] gave
an affirmative answer to the Singer-Wermer conjecture. Obviously, because of
inner derivations, this result does not remain valid for noncommutative Banach
algebras. There are, however, various noncommutative versions of the Singer-
Wermer theorem for Banach algebras [11, 12, 16]. For example, Sinclair [16]
proved that every continuous derivation of a Banach algebra A leaves primitive
ideals of A invariant. Mathieu and Runde [12] gave another noncommutative
extension of the Singer-Wermer theorem: Every centralizing derivation on a
noncommutative Banach algebra has its image in the radical of algebra; see
Posner [15] for the noncommutative version of the Singer-Wermer theorem for
prime rings; see also [1, 6, 7, 20] for range inclusion results for derivations on
not necessarily commutative Banach algebras.

Isik and et al. [4] gave some interesting results on the structure of the
Banach algebra L∞(G)∗, for an infinite compact group G. Lau and Pym [8]
introduced the subspace L∞

0 (G) of L∞(G) consisting of bounded measurable
functions on locally compact group G that vanish at infinity. For a locally
compact group, they proved most of the results obtained in [4] for L∞

0 (G)∗. In
fact, they introduced a sensible replacement for L∞(G), when G is compact.
Maghsoudi and et al. [10] have introduced and studied a semigroup analogue
of L∞

0 (G)∗. They showed that some aspects of the theory of L∞(G)∗ when G is
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a compact group hold for L∞
0 (ω)∗. Other aspects of analysis on these Banach

algebras have been studied by many authors; see for example, [9, 13, 18].
Since rAnn(L∞

0 (ω)∗) = C0(ω)
⊥, an easy application of the Hahn-Banach’s

theorem shows that there is a non-zero element r ∈ rAnn(L∞
0 (ω)∗); see for

example [2, Corollary 6.8 of Chapter 3]. Hence for every u ∈ Λ(L∞
0 (ω)∗), we

have u · r = 0, r · u = r and

r · L∞
0 (ω)∗ · r = {0}.

These relations imply that L∞
0 (ω)∗ is a noncommutative Banach algebra. It

also follows that L∞
0 (ω)∗ is not a prime ring. Therefore, we cannot apply the

well-known results concerning derivations of commutative Banach algebra and
derivation of prime rings to L∞

0 (ω)∗. It is natural to ask whether the results
hold for L∞

0 (ω)∗. In this paper we investigate the truth of these results for
L∞
0 (ω)∗.
This paper is organized as follows: In Section 2, we prove that the range of

every derivation on the noncommutative Banach algebra L∞
0 (ω)∗ is contained in

the radical of L∞
0 (ω)∗ and that every derivation on L∞

0 (ω)∗ leaves the primitive
ideals of L∞

0 (ω)∗ invariant. We also show that a derivation on L∞
0 (ω)∗ is

continuous if and only if its restriction to rad(L∞
0 (ω)∗) is continuous. In Section

3, we study centralizing derivations and inner derivations of L∞
0 (ω)∗. We show

that there is no nonzero centralizing derivation on L∞
0 (ω)∗ and prove that the

space of all inner derivations of L∞
0 (ω)∗ is continuously homomorphic to the

space L∞
0 (ω)∗/L1(ω).

2. The range and automatic continuity of derivations

Let rad(L∞
0 (ω)∗) denote the radical of Banach algebra L∞

0 (ω)∗. The main
result of this paper is the following theorem.

Theorem 2.1. Let ω be a weight function on R
+ and D be a derivation on

L∞
0 (ω)∗. Then D maps L∞

0 (ω)∗ into rad(L∞
0 (ω)∗) = rAnn(L∞

0 (ω)∗).

Proof. First, note that every element of rAnn(L∞
0 (ω)∗) is nilpotent. So

rAnn(L∞
0 (ω)∗) ⊆ rad(L∞

0 (ω)∗).

Since ω(x) ≥ 1 for all x ∈ R
+, the Banach algebra M(ω) is semisimple; see

for example [3]. This together with the fact that M(ω) is isometrically isomor-
phism to L∞

0 (ω)∗/rAnn(L∞
0 (ω))∗ yields that

rad(L∞
0 (ω)∗)/rAnn(L∞

0 (ω)∗) = 0.

It follows that rad(L∞
0 (ω)∗) is contained in rAnn(L∞

0 (ω)∗). Thus

rad(L∞
0 (ω)∗) = rAnn(L∞

0 (ω)∗).

For every k ∈ L∞
0 (ω)∗ and r ∈ rAnn(L∞

0 (ω)∗) we have

k ·D(r) = D(k · r)−D(k) · r = 0.
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HenceD maps rAnn(L∞
0 (ω)∗) into rAnn(L∞

0 (ω)∗), which implies that the func-
tion

D : L∞
0 (ω)∗/rAnn(L∞

0 (ω)∗) → L∞
0 (ω)∗/rAnn(L∞

0 (ω)∗)

defined by

D(m+ rAnn(L∞
0 (ω)∗)) = D(m) + rAnn(L∞

0 (ω)∗)

is well defined. It is easy to see that D is a derivation on semisimple and
commutative Banach algebra L∞

0 (ω)∗/rAnn(L∞
0 (ω)∗). Thus

D(m+ rAnn(L∞
0 (ω)∗)) = 0

for all m ∈ L∞
0 (ω)∗. Hence D(m) is an element in rAnn(L∞

0 (ω)∗). That is,

D(L∞
0 (ω)∗) ⊆ rAnn(L∞

0 (ω)∗),

as claimed. �

As an immediate consequence of this theorem we have the following result.

Corollary 2.2. Let ω be a weight function on R
+. Then the following state-

ments hold:

(i) Any derivation on L∞
0 (ω)∗ leaves primitive ideals of L∞

0 (ω)∗ invariant.

(ii) The composition of two derivations on L∞
0 (ω)∗ is always a derivation

on L∞
0 (ω)∗.

Let us recall that a linear mapping T : L∞
0 (ω)∗ → L∞

0 (ω)∗ is called spectrally

bounded if there exists α ≥ 0 such that r(T (m)) ≤ αr(m) for all m ∈ L∞
0 (ω)∗,

where r(·) stands for the spectral radius.

Corollary 2.3. Let ω be a weight function on R
+. Then the following state-

ments hold:
(i) Any derivation on L∞

0 (ω)∗ is spectrally bounded.

(ii) Zero is the only weak∗-weak∗ continuous derivation on L∞
0 (ω)∗.

Proof. (i) Let D be a derivation on L∞
0 (ω)∗. If m ∈ L∞

0 (ω)∗, then by Theorem
2.1, D(m)i = 0 for all i ≥ 2. Hence

r(D(m)) = lim
i→∞

‖D(m)i‖1/i = 0.

So D is spectrally bounded.
(ii) Let D be a weak∗-weak∗ continuous derivation on L∞

0 (ω)∗ and φ ∈
L1(ω). Invoke Cohen’s factorization theorem to conclude that φ = φ1 ∗ φ2 for
some φ1, φ2 ∈ L1(ω). By definition of rAnn(L∞

0 (ω)∗), we have

(2) L1(ω) · rAnn(L∞
0 (ω)∗) = {0}.

Proposition 2.3 of [10] together with the fact that rAnn(L∞
0 (ω)∗) = C0(ω)

⊥

implies that

(3) rAnn(L∞
0 (ω)∗) · L1(ω) = {0}.
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From (2) and (3) it follows that

D(φ) = D(φ1 ∗ φ2) = D(φ1) · φ2 + φ1 ·D(φ2) = 0.

This shows that D(L1(ω)) = {0}. From weak∗ density of L1(ω) in L∞
0 (ω)∗ we

infer that D = 0. Hence (ii) holds. �

We conclude the section by the following result.

Theorem 2.4. Let ω be a weight function on R
+ and D be a derivation on

L∞
0 (ω)∗. Then D is continuous if and only if D|rad(L∞

0
(ω)∗) is continuous.

Proof. Choose u ∈ Λ(L∞
0 (ω)∗). Let (u ·mα)α∈A be a net in L∞

0 (ω)∗ such that

u ·mα → 0 and D(u ·mα) → m ∈ L∞
0 (ω)∗

in the norm topology of L∞
0 (ω)∗. Suppose that m 6= 0 and i ∈ N. Choose

α0 ∈ A such that ‖D(u ·mα)‖ ≥ ‖m‖/2 and ‖u ·mα‖ < ‖m‖/i for all α ≥ α0.
In view of Theorem 2.1, we have

‖m‖/2 ≤ ‖D(u ·mα)‖ = ‖D(u) ·mα‖

= ‖D(u) · u ·mα‖ ≤ ‖D(u)‖‖u ·mα‖

≤ ‖D(u)‖‖m‖/i.

Hence ‖D(u)‖ ≥ i/2 for all i ∈ N. This contradiction shows that m = 0. By
closed graph theorem, D|u·L∞

0
(ω)∗ is continuous. Thus there existsM1 > 0 such

that for every m ∈ L∞
0 (ω)∗

‖D(u ·m)‖ ≤M1‖u ·m‖.

Now, let D|rad(L∞

0
(ω)∗) be continuous. Then there exists M2 > 0 such that

‖D(r)‖ ≤M2 ‖r‖ for all r ∈ rad(L∞
0 (ω)∗). For any m ∈ L∞

0 (ω)∗ set

rm = m− u ·m ∈ rad(L∞
0 (ω)∗).

Then

‖D(m)‖ = ‖D(u ·m) +D(rm)‖

≤ ‖D(u ·m)‖+ ‖D(rm)‖

≤M1 ‖u ·m‖+M2 ‖m− u ·m‖

≤M1 ‖m‖+ 2M2 ‖m‖

= (M1 + 2M2) ‖m‖.

Therefore, D is bounded. The converse is clear. �

3. Centralizing derivations and inner derivations

In the sequel, Z(L∞
0 (ω)∗) denotes the center of L∞

0 (ω)∗ and we write [m,n] =
m · n− n ·m for all m,n ∈ L∞

0 (ω)∗.

Theorem 3.1. Let ω be a weight function on R
+ and D be a derivation on

L∞
0 (ω)∗. Then the following assertions are equivalent.
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(a) D = 0.
(b) There exists i ∈ N such that D(mi) = 0 for all m ∈ L∞

0 (ω)∗.
(c) There exists i ∈ N such that D(mi) ∈ Z(L∞

0 (ω)∗) for all m ∈ L∞
0 (ω)∗.

(d) There exists i ∈ N such that [D(m),mi] ∈ Z(L∞
0 (ω)∗) for all m ∈

L∞
0 (ω)∗.

(e) There exists i ∈ N such that [D(m),mi] = 0 for all m ∈ L∞
0 (ω)∗.

Proof. The implications (a)⇒ (b)⇒ (c) are clear. It follows from Theorem 2.1
that

[D(m),mi−1] = D(m) ·mi−1 −mi−1 ·D(m) = D(mi).

Hence (c)⇒ (d). Let us show that (d)⇒ (e) and (e)⇒ (a). Assume that (d)
holds. Choose u ∈ Λ(L∞

0 (ω)∗). Then

[D(m),mi] = [D(m),mi] · u = u · [D(m),mi]

= u ·D(m) ·mi = 0.

So, we obtain (e). To complete the proof, suppose that there is i ∈ N such that
[D(m),mi] = 0 for all m ∈ L∞

0 (ω)∗. Fix u ∈ Λ(L∞
0 (ω)∗). Then

D(u) = [D(u), ui] = 0.

For every r ∈ rAnn(L∞
0 (ω)∗), we have

0 = [D(r + u), (r + u)i] = [D(r), (r + u)i]

= D(r)(ri + c1r
i−1u+ c2r

i−2u2 + · · ·+ ci−1ru
i−1 + ui) = D(r)

for some c1, . . . , ci−1 ≥ 0. Now, let m ∈ L∞
0 (ω)∗. Then

rm = m− u ·m ∈ rAnn(L∞
0 (ω)∗).

Thus

D(m) = D(u ·m) +D(rm) = D(u) ·m+D(rm) = 0.

Therefore, D = 0. So (e) implies (a). �

A mapping T : L∞
0 (ω)∗ → L∞

0 (ω)∗ is called centralizing if [T (m),m] ∈
Z(L∞

0 (ω)∗) for all m ∈ L∞
0 (ω)∗; in a special case when [T (m),m] = 0 for all

m ∈ L∞
0 (ω)∗, T is called commuting.

Corollary 3.2. Let ω be a weight function on R
+. Then the following state-

ments hold:
(i) Zero is the only centralizing derivation on L∞

0 (ω)∗.
(ii) Zero is the only commuting derivation on L∞

0 (ω)∗.

A derivation D on L∞
0 (ω)∗ is said to be inner if there exists n0 ∈ L∞

0 (ω)∗

such that D(m) = [m,n0] for all m ∈ L∞
0 (ω)∗.

Proposition 3.3. Let ω be a weight function on R
+ and D be a derivation on

L∞
0 (ω)∗. Then the following assertions are equivalent.

(a) D is inner.



1130 M. J. MEHDIPOUR AND Z. SAEEDI

(b) There exists n0 ∈ L∞
0 (ω)∗ such that D(m2) = [m2, n0] for all m ∈

L∞
0 (ω)∗.

(c) There exists n0 ∈ L∞
0 (ω)∗ such that the mapping m 7→ D(m) + n0 ·m

is commuting.

(d) There exists n0 ∈ L∞
0 (ω)∗ such that the mapping m 7→ D(m) + n0 ·m

is centralizing.

Proof. It is obvious that (a) implies (b) and that (c) implies (d). Suppose that
there is n0 ∈ L∞

0 (ω)∗ such that D(m2) = [m2, n0] for all m ∈ L∞
0 (ω)∗, then by

(1) we have

[D(m) + n0 ·m,m] = D(m) ·m+ n0 ·m
2 −m · n0 ·m

= D(m2) + n0 ·m
2 −m · n0 ·m

= (m2 · n0 − n0 ·m
2) + n0 ·m

2 −m2 · n0

= 0.

This shows that the mapping m 7→ D(m)+n0 ·m is commuting. So (b) implies

(c). Finally, let n0 ∈ L∞
0 (ω)∗. We define D̃ : L∞

0 (ω)∗ → L∞
0 (ω)∗ by

D̃(m) = D(m)− [m,n0].

It is plain that D̃ is a derivation on L∞
0 (ω)∗. It follows from Theorem 2.1 that

[D̃(m),m] = D̃(m) ·m = [D(m) + n0 ·m,m].

If (d) holds, then D̃ is a centralizing derivation. So D̃(m) = 0 by Corollary
3.2. This shows that

D(m) = [m,n0]

for all m ∈ L∞
0 (ω)∗. That is, D is inner. Hence (d) implies (a). �

In the following, let InnD(L∞
0 (ω)∗) be the space of all inner derivations on

L∞
0 (ω)∗.

Theorem 3.4. Let ω be a weight function on R
+. Then the mapping I :

m + L1(ω) 7→ Im is a continuous homomorphism from L∞
0 (ω)∗/L1(ω) onto

Inn D(L∞
0 (ω)∗), where Im(n) = [n,m] for all m ∈ L∞

0 (ω)∗. Furthermore, I is

an isomorphism if and only if Z(L∞
0 (ω)∗) = L1(ω).

Proof. First note that if u ∈ Λ(L∞
0 (ω)∗), then u is a mixed identity and u ·

L∞
0 (ω)∗ is commutative. Let m ∈ L∞

0 (ω)∗ and φ ∈ L1(ω). Then

φ ·m = u · φ · u ·m = u ·m · u · φ

= u ·m · φ.(4)

Since L1(ω) is an ideal in L∞
0 (ω)∗ and u is a mixed identity, we get

(5) u ·m · φ = m · φ.

From (4) and (5) we see that

(6) φ ·m = m · φ.
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So the mapping I is well defined. Obviously, I is a homomorphism. To see
that I is continuous, let n ∈ L∞

0 (ω)∗ and φ ∈ L1(ω). Then

‖Im(n)‖ = ‖n ·m−m · n‖

≤ ‖n ·m− φ · n‖+ ‖φ · n−m · n‖

≤ ‖n‖ ‖m− φ‖+ ‖φ−m‖ ‖n‖

= 2‖n‖ ‖m− φ‖

for all m ∈ L∞
0 (ω)∗. This implies that

‖I(m+ L1(ω))‖ = ‖Im‖ ≤ 2‖m− φ‖

for all m ∈ L∞
0 (ω)∗ and φ ∈ L1(ω). Hence

‖I(m+ L1(ω))‖ ≤ 2 inf{‖m− φ‖ : φ ∈ L1(ω)}

= 2 inf{‖m+ φ‖ : φ ∈ L1(ω)} = 2 ‖m+ L1(ω)‖.

Therefore, I is continuous.
Now, letm ∈ Z(L∞

0 (ω)∗). Then Im = 0 on L∞
0 (ω)∗. Thus I(m+L1(ω)) = 0.

It follows that m ∈ L1(ω) if I is an isomorphism. This together with (6) shows
that

Z(L∞
0 (ω)∗) = L1(ω).

To complete the proof, let m ∈ L∞
0 (ω)∗ and I(m+ L1(ω)) = 0. Then

Im(n) = n ·m−m · n = 0

for all n ∈ L∞
0 (ω)∗. This shows that m ∈ Z(L∞

0 (ω)∗). So, if Z(L∞
0 (ω)∗) =

L1(ω), then m ∈ L1(ω) and so I is an isomorphism. �
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