Bull. Korean Math. Soc. **52** (2015), No. 4, pp. 1123–1132 http://dx.doi.org/10.4134/BKMS.2015.52.4.1123

DERIVATIONS ON CONVOLUTION ALGEBRAS

Mohammad Javad Mehdipour and Zahra Saeedi

ABSTRACT. In this paper, we investigate derivations on the noncommutative Banach algebra $L_0^{\infty}(\omega)^*$ equipped with an Arens product. As a main result, we prove the Singer-Wermer conjecture for the noncommutative Banach algebra $L_0^{\infty}(\omega)^*$. We then show that a derivation on $L_0^{\infty}(\omega)^*$ is continuous if and only if its restriction to $\operatorname{rad}(L_0^{\infty}(\omega)^*)$ is continuous. We also prove that there is no nonzero centralizing derivation on $L_0^{\infty}(\omega)^*$. Finally, we prove that the space of all inner derivations of $L_0^{\infty}(\omega)^*$ is continuously homomorphic to the space $L_0^{\infty}(\omega)^*/L^1(\omega)$.

1. Introduction

Let ω be a weight function on $\mathbb{R}^+ = [0, \infty)$, i.e., a continuous function $\omega : \mathbb{R}^+ \to [1, \infty)$ so that $\omega(0) = 1$ and

$$w(x+y) \le w(x) \ w(y)$$

for all $x, y \in \mathbb{R}^+$. Let also $L^1(\omega)$ be the Banach space of all Lebesgue measurable functions ϕ on \mathbb{R}^+ such that

$$\|\phi\|_{1,\ \omega} = \int_0^\infty |\phi(x)| \ w(x) \ dx < \infty$$

Then $L^1(\omega)$ with the norm $\|\cdot\|_{1,\omega}$ and the convolution product "*" defined by

$$\phi * \psi(x) = \int_0^x \phi(y)\psi(x-y) \, dy \quad (x \in \mathbb{R}^+)$$

is a Banach algebra. We also assume that $L_0^\infty(\omega)$ is the Banach space of all Lebesgue measurable functions f on \mathbb{R}^+ such that

$$||f\chi_{(x,\infty)}||_{\infty,\omega} = \operatorname{ess\,sup}\{f(y)\chi_{(x,\infty)}(y)/\omega(y) : y \in \mathbb{R}^+\} \to 0$$

as $x \to \infty$. For every $f \in L_0^{\infty}(\omega)$ and $\phi \in L^1(\omega)$, the function $f \circ \phi$ defined by

$$f \circ \phi(x) = \int_0^\infty f(x+y)\phi(y) \, dy \qquad (x \in \mathbb{R}^+)$$

O2015Korean Mathematical Society

Received April 8, 2014; Revised January 16, 2015.

²⁰¹⁰ Mathematics Subject Classification. Primary 47B47, 46H40, 16W25.

Key words and phrases. derivation, inner derivation, centralizing, automatic continuity.

is an element in $C_0(\omega)$, the Banach space of all continuous complex-valued functions f on \mathbb{R}^+ such that f/ω vanishes at infinity; see [10]. So, we may endow the dual of $L_0^{\infty}(\omega)$, represented by $L_0^{\infty}(\omega)^*$, with the first Arens product "·" defined as follows. For any ϕ in $L^1(\omega)$, f in $L_0^{\infty}(\omega)$ and m, n in $L_0^{\infty}(\omega)^*$, the element $m \cdot n$ is defined by

$$\langle m \cdot n, f \rangle = \langle m, nf \rangle,$$

where $\langle nf, \phi \rangle = \langle n, f \circ \phi \rangle$. Then $L_0^{\infty}(\omega)^*$ with this product is a Banach algebra; see [10]; see also Lau and Pym [8] for the locally compact group case. Note that since $\phi \cdot \psi = \phi * \psi$ for $\phi, \psi \in L^1(\omega), L^1(\omega)$ may be regarded as a subspace of $L_0^{\infty}(\omega)^*$ and then $L^1(\omega)$ is a closed ideal in $L_0^{\infty}(\omega)^*$ [10].

Since $\omega(x) \geq 1$ for all $x \in \mathbb{R}^+$, the Banach algebra $L^1(\omega)$ has a bounded approximate identity, for example the sequence $\{i\chi_{(0,1/i)}\}_{i\in\mathbb{N}}$ is one of them; see [14]. We denote by $\Lambda(L_0^{\infty}(\omega)^*)$ the set of all weak*-cluster points of an approximate identity in $L^1(\omega)$ bounded by one. Note that for any $n \in L_0^{\infty}(\omega)^*$ and $\phi \in L^1(\omega)$, the maps

$$m \mapsto m \cdot n$$
 and $m \mapsto \phi \cdot m$

are weak^{*}-weak^{*} continuous on $L_0^{\infty}(\omega)^*$. Hence if $u \in \Lambda(L_0^{\infty}(\omega)^*)$, then u is a mixed identity with norm one, that is, ||u|| = 1 and $u \cdot \phi = \phi \cdot u = \phi$ for all $\phi \in L^1(\omega)$. Goldstine's theorem implies that every mixed identity for $L_0^{\infty}(\omega)^*$ is a right identity for $L_0^{\infty}(\omega)^*$. Also, note that if u is a right identity for $L_0^{\infty}(\omega)^*$ and (e_{α}) is a bounded net in $L^1(\omega)$ such that $e_{\alpha} \to u$ in the weak^{*} topology of $L_0^{\infty}(\omega)^*$, then for every $\phi \in L^1(\omega)$, we have

$$\phi \cdot e_{\alpha} \to \phi$$

in the weak topology. Passing to convex combinations, we can suppose that $\phi \cdot e_{\alpha} \to \phi$ in the norm topology. This together with the fact that $L^{1}(\omega)$ is a commutative Banach algebra shows that (e_{α}) is a bounded approximate identity for $L^{1}(\omega)$. Thus $u \in \Lambda(L_{0}^{\infty}(\omega)^{*})$. These facts can be summarized by saying that $u \in \Lambda(L_{0}^{\infty}(\omega)^{*})$ if and only if it is a right identity for $L_{0}^{\infty}(\omega)^{*}$ with norm one or, equivalently, u is a mixed identity with norm one.

By $M(\omega)$ we mean the Banach space of all complex regular Borel measures μ on \mathbb{R}^+ such that

$$\|\mu\|_{\omega} = \int_0^{\infty} \omega(x) \ d|\mu|(x) < \infty,$$

where $|\mu|$ denotes the total variation of μ . By the usual way, the Banach space $M(\omega)$ can be identified with the dual of $C_0(\omega)$. So, we may define the convolution multiplication "*" by

$$\langle \mu * \nu, g \rangle = \int_0^\infty \int_0^\infty g(x+y) \ d\mu(x) \ d\nu(y)$$

for all $\mu, \nu \in M(\omega)$ and $g \in C_0(\omega)$. Then the Banach space $M(\omega)$ with the convolution product * and the norm $\|\cdot\|_{\omega}$ is a commutative Banach algebra. Let us remark from [11, Theorem 3.6(i) and Example 4.13(c)] that if u is an element of $\Lambda(L_0^{\infty}(\omega)^*)$, then $u \cdot L_0^{\infty}(\omega)^*$ is isometrically isomorphic to $M(\omega)$. This implies that $u \cdot L_0^{\infty}(\omega)^*$ is commutative and so for every $k, m, n \in L_0^{\infty}(\omega)^*$

(1)
$$k \cdot m \cdot n = k \cdot u \cdot m \cdot u \cdot n = k \cdot u \cdot n \cdot u \cdot m = k \cdot n \cdot m$$

Let $\operatorname{rAnn}(L_0^{\infty}(\omega)^*)$ be the set of all $r \in L_0^{\infty}(\omega)^*$ such that $L_0^{\infty}(\omega)^* \cdot r = \{0\}$. For every $m \in L_0^{\infty}(\omega)^*, f \in L_0^{\infty}(\omega)$ and $\phi \in L^1(\omega)$, we have

$$\langle \phi \cdot m, f \rangle = \langle \phi, mf \rangle = \langle mf, \phi \rangle = \langle m, f \circ \phi \rangle.$$

Also it is well-known from [11, Proposition 2.3(b) and Example 4.13(c)] that

$$L_0^{\infty}(\omega) \circ L^1(\omega) = C_0(\omega).$$

These facts show that $rAnn(L_{\infty}^{\infty})$

$$\operatorname{Ann}(L_0^{\infty}(\omega)^*) = C_0(\omega)^{\perp} := \{ r \in L_0^{\infty}(\omega)^* : r|_{C_0(\omega)} = 0 \}$$

Let us recall from [11, Theorem 3.6(iv) and Example 4.13(c)] that if $u \in \Lambda(L_0^{\infty}(\omega)^*)$, then the Banach space $L_0^{\infty}(\omega)^*$ is the Banach space direct sum of $u \cdot L_0^{\infty}(\omega)^*$ and rAnn $(L_0^{\infty}(\omega)^*)$.

Let A be a Banach algebra; a linear mapping $D:A \rightarrow A$ is called a derivation if

$$D(ab) = D(a)b + aD(b).$$

In 1955, Singer and Wermer [17] proved that every continuous derivation on a commutative Banach algebra maps the algebra into its radical. They conjectured that the continuity requirement for the derivations is unnecessary and can be removed. Johnson [5] showed the automatic continuity of derivations of commutative semisimple Banach algebras and so the conjecture can be established for these types of Banach algebras. Finally in 1988, Thomas [19] gave an affirmative answer to the Singer-Wermer conjecture. Obviously, because of inner derivations, this result does not remain valid for noncommutative Banach algebras. There are, however, various noncommutative versions of the Singer-Wermer theorem for Banach algebras [11, 12, 16]. For example, Sinclair [16] proved that every continuous derivation of a Banach algebra A leaves primitive ideals of A invariant. Mathieu and Runde [12] gave another noncommutative extension of the Singer-Wermer theorem: Every centralizing derivation on a noncommutative Banach algebra has its image in the radical of algebra; see Posner [15] for the noncommutative version of the Singer-Wermer theorem for prime rings; see also [1, 6, 7, 20] for range inclusion results for derivations on not necessarily commutative Banach algebras.

Isik and et al. [4] gave some interesting results on the structure of the Banach algebra $L^{\infty}(G)^*$, for an infinite compact group G. Lau and Pym [8] introduced the subspace $L_0^{\infty}(G)$ of $L^{\infty}(G)$ consisting of bounded measurable functions on locally compact group G that vanish at infinity. For a locally compact group, they proved most of the results obtained in [4] for $L_0^{\infty}(G)^*$. In fact, they introduced a sensible replacement for $L^{\infty}(G)$, when G is compact. Maghsoudi and et al. [10] have introduced and studied a semigroup analogue of $L_0^{\infty}(G)^*$. They showed that some aspects of the theory of $L^{\infty}(G)^*$ when G is a compact group hold for $L_0^{\infty}(\omega)^*$. Other aspects of analysis on these Banach algebras have been studied by many authors; see for example, [9, 13, 18].

Since $\operatorname{rAnn}(L_0^{\infty}(\omega)^*) = C_0(\omega)^{\perp}$, an easy application of the Hahn-Banach's theorem shows that there is a non-zero element $r \in \operatorname{rAnn}(L_0^{\infty}(\omega)^*)$; see for example [2, Corollary 6.8 of Chapter 3]. Hence for every $u \in \Lambda(L_0^{\infty}(\omega)^*)$, we have $u \cdot r = 0$, $r \cdot u = r$ and

$$r \cdot L_0^\infty(\omega)^* \cdot r = \{0\}.$$

These relations imply that $L_0^{\infty}(\omega)^*$ is a noncommutative Banach algebra. It also follows that $L_0^{\infty}(\omega)^*$ is not a prime ring. Therefore, we cannot apply the well-known results concerning derivations of commutative Banach algebra and derivation of prime rings to $L_0^{\infty}(\omega)^*$. It is natural to ask whether the results hold for $L_0^{\infty}(\omega)^*$. In this paper we investigate the truth of these results for $L_0^{\infty}(\omega)^*$.

This paper is organized as follows: In Section 2, we prove that the range of every derivation on the noncommutative Banach algebra $L_0^{\infty}(\omega)^*$ is contained in the radical of $L_0^{\infty}(\omega)^*$ and that every derivation on $L_0^{\infty}(\omega)^*$ leaves the primitive ideals of $L_0^{\infty}(\omega)^*$ invariant. We also show that a derivation on $L_0^{\infty}(\omega)^*$ is continuous if and only if its restriction to $\operatorname{rad}(L_0^{\infty}(\omega)^*)$ is continuous. In Section 3, we study centralizing derivations and inner derivations of $L_0^{\infty}(\omega)^*$. We show that there is no nonzero centralizing derivation on $L_0^{\infty}(\omega)^*$ and prove that the space of all inner derivations of $L_0^{\infty}(\omega)^*$ is continuously homomorphic to the space $L_0^{\infty}(\omega)^*/L^1(\omega)$.

2. The range and automatic continuity of derivations

Let $\operatorname{rad}(L_0^{\infty}(\omega)^*)$ denote the radical of Banach algebra $L_0^{\infty}(\omega)^*$. The main result of this paper is the following theorem.

Theorem 2.1. Let ω be a weight function on \mathbb{R}^+ and D be a derivation on $L_0^{\infty}(\omega)^*$. Then D maps $L_0^{\infty}(\omega)^*$ into $\operatorname{rad}(L_0^{\infty}(\omega)^*) = \operatorname{rAnn}(L_0^{\infty}(\omega)^*)$.

Proof. First, note that every element of $rAnn(L_0^{\infty}(\omega)^*)$ is nilpotent. So

 $\operatorname{rAnn}(L_0^{\infty}(\omega)^*) \subseteq \operatorname{rad}(L_0^{\infty}(\omega)^*).$

Since $\omega(x) \geq 1$ for all $x \in \mathbb{R}^+$, the Banach algebra $M(\omega)$ is semisimple; see for example [3]. This together with the fact that $M(\omega)$ is isometrically isomorphism to $L_0^{\infty}(\omega)^*/\operatorname{rAnn}(L_0^{\infty}(\omega))^*$ yields that

$$\operatorname{rad}(L_0^{\infty}(\omega)^*)/\operatorname{rAnn}(L_0^{\infty}(\omega)^*) = 0.$$

It follows that $\operatorname{rad}(L_0^{\infty}(\omega)^*)$ is contained in $\operatorname{rAnn}(L_0^{\infty}(\omega)^*)$. Thus

$$\operatorname{rad}(L_0^{\infty}(\omega)^*) = \operatorname{rAnn}(L_0^{\infty}(\omega)^*).$$

For every $k \in L_0^{\infty}(\omega)^*$ and $r \in \operatorname{rAnn}(L_0^{\infty}(\omega)^*)$ we have

$$k \cdot D(r) = D(k \cdot r) - D(k) \cdot r = 0.$$

Hence D maps rAnn $(L_0^{\infty}(\omega)^*)$ into rAnn $(L_0^{\infty}(\omega)^*)$, which implies that the function

$$\overline{D}: L_0^\infty(\omega)^*/\mathrm{rAnn}(L_0^\infty(\omega)^*) \to L_0^\infty(\omega)^*/\mathrm{rAnn}(L_0^\infty(\omega)^*)$$

defined by

$$\overline{D}(m + \operatorname{rAnn}(L_0^{\infty}(\omega)^*)) = D(m) + \operatorname{rAnn}(L_0^{\infty}(\omega)^*)$$

is well defined. It is easy to see that \overline{D} is a derivation on semisimple and commutative Banach algebra $L_0^{\infty}(\omega)^*/rAnn(L_0^{\infty}(\omega)^*)$. Thus

$$\overline{D}(m + r\operatorname{Ann}(L_0^{\infty}(\omega)^*)) = 0$$

for all $m \in L_0^{\infty}(\omega)^*$. Hence D(m) is an element in rAnn $(L_0^{\infty}(\omega)^*)$. That is,

$$D(L_0^{\infty}(\omega)^*) \subseteq \operatorname{rAnn}(L_0^{\infty}(\omega)^*)$$

as claimed.

As an immediate consequence of this theorem we have the following result.

Corollary 2.2. Let ω be a weight function on \mathbb{R}^+ . Then the following statements hold:

- (i) Any derivation on $L_0^{\infty}(\omega)^*$ leaves primitive ideals of $L_0^{\infty}(\omega)^*$ invariant.
- (ii) The composition of two derivations on L₀[∞](ω)* is always a derivation on L₀[∞](ω)*.

Let us recall that a linear mapping $T: L_0^{\infty}(\omega)^* \to L_0^{\infty}(\omega)^*$ is called *spectrally* bounded if there exists $\alpha \geq 0$ such that $r(T(m)) \leq \alpha r(m)$ for all $m \in L_0^{\infty}(\omega)^*$, where $r(\cdot)$ stands for the spectral radius.

Corollary 2.3. Let ω be a weight function on \mathbb{R}^+ . Then the following statements hold:

- (i) Any derivation on $L_0^{\infty}(\omega)^*$ is spectrally bounded.
- (ii) Zero is the only weak^{*}-weak^{*} continuous derivation on $L_0^{\infty}(\omega)^*$.

Proof. (i) Let D be a derivation on $L_0^{\infty}(\omega)^*$. If $m \in L_0^{\infty}(\omega)^*$, then by Theorem 2.1, $D(m)^i = 0$ for all $i \ge 2$. Hence

$$r(D(m)) = \lim_{i \to \infty} \|D(m)^i\|^{1/i} = 0.$$

So D is spectrally bounded.

(ii) Let D be a weak*-weak* continuous derivation on $L_0^{\infty}(\omega)^*$ and $\phi \in L^1(\omega)$. Invoke Cohen's factorization theorem to conclude that $\phi = \phi_1 * \phi_2$ for some $\phi_1, \phi_2 \in L^1(\omega)$. By definition of rAnn $(L_0^{\infty}(\omega)^*)$, we have

(2)
$$L^{1}(\omega) \cdot \operatorname{rAnn}(L_{0}^{\infty}(\omega)^{*}) = \{0\}$$

Proposition 2.3 of [10] together with the fact that $rAnn(L_0^{\infty}(\omega)^*) = C_0(\omega)^{\perp}$ implies that

(3)
$$\operatorname{rAnn}(L_0^{\infty}(\omega)^*) \cdot L^1(\omega) = \{0\}.$$

From (2) and (3) it follows that

$$D(\phi) = D(\phi_1 * \phi_2) = D(\phi_1) \cdot \phi_2 + \phi_1 \cdot D(\phi_2) = 0$$

This shows that $D(L^1(\omega)) = \{0\}$. From weak^{*} density of $L^1(\omega)$ in $L_0^{\infty}(\omega)^*$ we infer that D = 0. Hence (ii) holds.

We conclude the section by the following result.

Theorem 2.4. Let ω be a weight function on \mathbb{R}^+ and D be a derivation on $L_0^{\infty}(\omega)^*$. Then D is continuous if and only if $D|_{\operatorname{rad}(L_0^{\infty}(\omega)^*)}$ is continuous.

Proof. Choose
$$u \in \Lambda(L_0^{\infty}(\omega)^*)$$
. Let $(u \cdot m_{\alpha})_{\alpha \in A}$ be a net in $L_0^{\infty}(\omega)^*$ such that $u \cdot m_{\alpha} \to 0$ and $D(u \cdot m_{\alpha}) \to m \in L_0^{\infty}(\omega)^*$

in the norm topology of $L_0^{\infty}(\omega)^*$. Suppose that $m \neq 0$ and $i \in \mathbb{N}$. Choose $\alpha_0 \in A$ such that $\|D(u \cdot m_\alpha)\| \ge \|m\|/2$ and $\|u \cdot m_\alpha\| < \|m\|/i$ for all $\alpha \ge \alpha_0$. In view of Theorem 2.1, we have

$$|m||/2 \le ||D(u \cdot m_{\alpha})|| = ||D(u) \cdot m_{\alpha}||$$

= ||D(u) \cdot u \cdot m_{\alpha}|| \le ||D(u)|| ||u \cdot m_{\alpha}||
\le ||D(u)|| ||m||/i.

Hence $||D(u)|| \ge i/2$ for all $i \in \mathbb{N}$. This contradiction shows that m = 0. By closed graph theorem, $D|_{u \cdot L_0^{\infty}(\omega)^*}$ is continuous. Thus there exists $M_1 > 0$ such that for every $m \in L_0^{\infty}(\omega)^*$

$$\|D(u \cdot m)\| \le M_1 \|u \cdot m\|.$$

Now, let $D|_{\operatorname{rad}(L_0^{\infty}(\omega)^*)}$ be continuous. Then there exists $M_2 > 0$ such that $||D(r)|| \leq M_2 ||r||$ for all $r \in \operatorname{rad}(L_0^{\infty}(\omega)^*)$. For any $m \in L_0^{\infty}(\omega)^*$ set

$$r_m = m - u \cdot m \in \operatorname{rad}(L_0^\infty(\omega)^*).$$

Then

$$\begin{split} \|D(m)\| &= \|D(u \cdot m) + D(r_m)\| \\ &\leq \|D(u \cdot m)\| + \|D(r_m)\| \\ &\leq M_1 \|u \cdot m\| + M_2 \|m - u \cdot m\| \\ &\leq M_1 \|m\| + 2M_2 \|m\| \\ &= (M_1 + 2M_2) \|m\|. \end{split}$$

Therefore, D is bounded. The converse is clear.

3. Centralizing derivations and inner derivations

In the sequel, $Z(L_0^{\infty}(\omega)^*)$ denotes the center of $L_0^{\infty}(\omega)^*$ and we write $[m, n] = m \cdot n - n \cdot m$ for all $m, n \in L_0^{\infty}(\omega)^*$.

Theorem 3.1. Let ω be a weight function on \mathbb{R}^+ and D be a derivation on $L_0^{\infty}(\omega)^*$. Then the following assertions are equivalent.

1128

- (a) D = 0.
- (b) There exists $i \in \mathbb{N}$ such that $D(m^i) = 0$ for all $m \in L_0^{\infty}(\omega)^*$.
- (c) There exists $i \in \mathbb{N}$ such that $D(m^i) \in Z(L_0^{\infty}(\omega)^*)$ for all $m \in L_0^{\infty}(\omega)^*$.
- (d) There exists $i \in \mathbb{N}$ such that $[D(m), m^i] \in Z(L_0^{\infty}(\omega)^*)$ for all $m \in L_0^{\infty}(\omega)^*$.
- (e) There exists $i \in \mathbb{N}$ such that $[D(m), m^i] = 0$ for all $m \in L_0^{\infty}(\omega)^*$.

Proof. The implications (a) \Rightarrow (b) \Rightarrow (c) are clear. It follows from Theorem 2.1 that

$$[D(m), m^{i-1}] = D(m) \cdot m^{i-1} - m^{i-1} \cdot D(m) = D(m^i).$$

Hence (c) \Rightarrow (d). Let us show that (d) \Rightarrow (e) and (e) \Rightarrow (a). Assume that (d) holds. Choose $u \in \Lambda(L_0^{\infty}(\omega)^*)$. Then

$$[D(m), m^i] = [D(m), m^i] \cdot u = u \cdot [D(m), m^i]$$
$$= u \cdot D(m) \cdot m^i = 0.$$

So, we obtain (e). To complete the proof, suppose that there is $i \in \mathbb{N}$ such that $[D(m), m^i] = 0$ for all $m \in L_0^{\infty}(\omega)^*$. Fix $u \in \Lambda(L_0^{\infty}(\omega)^*)$. Then

$$D(u) = [D(u), u^i] = 0$$

For every $r \in \operatorname{rAnn}(L_0^{\infty}(\omega)^*)$, we have

$$0 = [D(r+u), (r+u)^{i}] = [D(r), (r+u)^{i}]$$

= $D(r)(r^{i} + c_{1}r^{i-1}u + c_{2}r^{i-2}u^{2} + \dots + c_{i-1}ru^{i-1} + u^{i}) = D(r)$

for some $c_1, \ldots, c_{i-1} \ge 0$. Now, let $m \in L_0^{\infty}(\omega)^*$. Then

$$r_m = m - u \cdot m \in \operatorname{rAnn}(L_0^\infty(\omega)^*).$$

Thus

$$D(m) = D(u \cdot m) + D(r_m) = D(u) \cdot m + D(r_m) = 0.$$

Therefore, D = 0. So (e) implies (a).

A mapping
$$T : L_0^{\infty}(\omega)^* \to L_0^{\infty}(\omega)^*$$
 is called *centralizing* if $[T(m), m] \in Z(L_0^{\infty}(\omega)^*)$ for all $m \in L_0^{\infty}(\omega)^*$; in a special case when $[T(m), m] = 0$ for all $m \in L_0^{\infty}(\omega)^*$, T is called *commuting*.

Corollary 3.2. Let ω be a weight function on \mathbb{R}^+ . Then the following statements hold:

- (i) Zero is the only centralizing derivation on $L_0^{\infty}(\omega)^*$.
- (ii) Zero is the only commuting derivation on $L_0^{\infty}(\omega)^*$.

A derivation D on $L_0^{\infty}(\omega)^*$ is said to be *inner* if there exists $n_0 \in L_0^{\infty}(\omega)^*$ such that $D(m) = [m, n_0]$ for all $m \in L_0^{\infty}(\omega)^*$.

Proposition 3.3. Let ω be a weight function on \mathbb{R}^+ and D be a derivation on $L_0^{\infty}(\omega)^*$. Then the following assertions are equivalent.

(a) D is inner.

- (b) There exists $n_0 \in L_0^{\infty}(\omega)^*$ such that $D(m^2) = [m^2, n_0]$ for all $m \in L_0^{\infty}(\omega)^*$.
- (c) There exists $n_0 \in L_0^{\infty}(\omega)^*$ such that the mapping $m \mapsto D(m) + n_0 \cdot m$ is commuting.
- (d) There exists $n_0 \in L_0^{\infty}(\omega)^*$ such that the mapping $m \mapsto D(m) + n_0 \cdot m$ is centralizing.

Proof. It is obvious that (a) implies (b) and that (c) implies (d). Suppose that there is $n_0 \in L_0^{\infty}(\omega)^*$ such that $D(m^2) = [m^2, n_0]$ for all $m \in L_0^{\infty}(\omega)^*$, then by (1) we have

$$[D(m) + n_0 \cdot m, m] = D(m) \cdot m + n_0 \cdot m^2 - m \cdot n_0 \cdot m$$

= $D(m^2) + n_0 \cdot m^2 - m \cdot n_0 \cdot m$
= $(m^2 \cdot n_0 - n_0 \cdot m^2) + n_0 \cdot m^2 - m^2 \cdot n_0$
= 0.

This shows that the mapping $m \mapsto D(m) + n_0 \cdot m$ is commuting. So (b) implies (c). Finally, let $n_0 \in L_0^{\infty}(\omega)^*$. We define $\tilde{D} : L_0^{\infty}(\omega)^* \to L_0^{\infty}(\omega)^*$ by

$$\hat{D}(m) = D(m) - [m, n_0].$$

It is plain that \tilde{D} is a derivation on $L_0^{\infty}(\omega)^*$. It follows from Theorem 2.1 that $[\tilde{D}(m) \ m] = \tilde{D}(m) \cdot m = [D(m) + n_0 \cdot m \ m]$

$$[D(m), m] = D(m) \cdot m = [D(m) + m_0 \cdot m, m].$$

If (d) holds, then \tilde{D} is a centralizing derivation. So $\tilde{D}(m) = 0$ by Corollary 3.2. This shows that D(m) = [m, n]

$$D(m) = [m, n_0]$$
 for all $m \in L_0^\infty(\omega)^*$. That is, D is inner. Hence (d) implies (a).

In the following, let $\text{InnD}(L_0^{\infty}(\omega)^*)$ be the space of all inner derivations on $L_0^{\infty}(\omega)^*$.

Theorem 3.4. Let ω be a weight function on \mathbb{R}^+ . Then the mapping \mathcal{I} : $m + L^1(\omega) \mapsto \mathcal{I}_m$ is a continuous homomorphism from $L_0^{\infty}(\omega)^*/L^1(\omega)$ onto Inn $D(L_0^{\infty}(\omega)^*)$, where $\mathcal{I}_m(n) = [n,m]$ for all $m \in L_0^{\infty}(\omega)^*$. Furthermore, \mathcal{I} is an isomorphism if and only if $Z(L_0^{\infty}(\omega)^*) = L^1(\omega)$.

Proof. First note that if $u \in \Lambda(L_0^{\infty}(\omega)^*)$, then u is a mixed identity and $u \cdot L_0^{\infty}(\omega)^*$ is commutative. Let $m \in L_0^{\infty}(\omega)^*$ and $\phi \in L^1(\omega)$. Then

$$\phi \cdot m = u \cdot \phi \cdot u \cdot m = u \cdot m \cdot u \cdot \phi$$

$$(4) \qquad \qquad = u \cdot m \cdot \phi$$

Since $L^1(\omega)$ is an ideal in $L_0^{\infty}(\omega)^*$ and u is a mixed identity, we get

(5)
$$u \cdot m \cdot \phi = m \cdot \phi$$

From (4) and (5) we see that

(6) $\phi \cdot m = m \cdot \phi.$

So the mapping \mathcal{I} is well defined. Obviously, \mathcal{I} is a homomorphism. To see that \mathcal{I} is continuous, let $n \in L_0^{\infty}(\omega)^*$ and $\phi \in L^1(\omega)$. Then

$$\begin{aligned} \|\mathcal{I}_{m}(n)\| &= \|n \cdot m - m \cdot n\| \\ &\leq \|n \cdot m - \phi \cdot n\| + \|\phi \cdot n - m \cdot n\| \\ &\leq \|n\| \|m - \phi\| + \|\phi - m\| \|n\| \\ &= 2\|n\| \|m - \phi\| \end{aligned}$$

for all $m \in L_0^{\infty}(\omega)^*$. This implies that

$$|\mathcal{I}(m+L^1(\omega))|| = ||\mathcal{I}_m|| \le 2||m-\phi||$$

for all $m \in L_0^{\infty}(\omega)^*$ and $\phi \in L^1(\omega)$. Hence

$$\begin{aligned} \|\mathcal{I}(m+L^{1}(\omega))\| &\leq 2\inf\{\|m-\phi\|:\phi\in L^{1}(\omega)\}\\ &= 2\inf\{\|m+\phi\|:\phi\in L^{1}(\omega)\} = 2\|m+L^{1}(\omega)\|. \end{aligned}$$

Therefore, \mathcal{I} is continuous.

Now, let $m \in \mathbb{Z}(L_0^{\infty}(\omega)^*)$. Then $\mathcal{I}_m = 0$ on $L_0^{\infty}(\omega)^*$. Thus $\mathcal{I}(m+L^1(\omega)) = 0$. It follows that $m \in L^1(\omega)$ if \mathcal{I} is an isomorphism. This together with (6) shows that

$$\mathbf{Z}(L_0^\infty(\omega)^*) = L^1(\omega).$$

To complete the proof, let $m \in L_0^{\infty}(\omega)^*$ and $\mathcal{I}(m + L^1(\omega)) = 0$. Then

$$\mathcal{I}_m(n) = n \cdot m - m \cdot n = 0$$

for all $n \in L_0^{\infty}(\omega)^*$. This shows that $m \in \mathbb{Z}(L_0^{\infty}(\omega)^*)$. So, if $\mathbb{Z}(L_0^{\infty}(\omega)^*) = L^1(\omega)$, then $m \in L^1(\omega)$ and so \mathcal{I} is an isomorphism. \Box

Acknowledgement. The authors would like to thank the referee of the paper for invaluable comments.

References

- M. Bresar and M. Mathieu, Derivations mapping into the radical III, J. Funct. Anal. 133 (1995), no. 1, 21–29.
- [2] J. W. Conway, A Course in Functional Analysis, Springer-Verlag, New York, 1985.
- [3] H. G. Dales, Banach Algebras and Automatic Continuity, Oxford University Press, New York, 2000.
- [4] N. Isik, J. Pym, and A. Ülger, The second dual of the group algebra of a compact group, J. London Math. Soc. 35 (1987), no. 1, 135–148.
- [5] B. E. Johnson, Continuity of derivations on commutative algebras, Amer. J. Math. 91 (1969), 1–10.
- [6] K. W. Jun and H. M. Kim, Derivations on prime rings and Banach algebras, Bull. Korean Math. Soc. 38 (2001), no. 4, 709–718.
- [7] _____, Approximate derivations mapping into the radicals of Banach algebras, Taiwanese J. Math. 11 (2007), no. 1, 277–288.
- [8] A. T. Lau and J. Pym, Concerning the second dual of the group algebra of a locally compact group, J. London Math. Soc. 41 (1990), no. 3, 445–460.

- [9] S. Maghsoudi, M. J. Mehdipour, and R. Nasr-Isfahani, Compact right multipliers on a Banach algebra related to locally compact semigroups, Semigroup Forum 83 (2011), no. 2, 205–213.
- [10] S. Maghsoudi, R. Nasr-Isfahani, and A. Rejali, Arens multiplication on Banach algebras related to locally compact semigroups, Math. Nachr. 281 (2008), no. 10, 1495–1510.
- [11] M. Mathieu and G. J. Murphy, Derivations mapping into the radical, Arch. Math. 57 (1991), no. 5, 469–474.
- [12] M. Mathieu and V. Runde, Derivations mapping into the radical II, Bull. London Math. Soc. 24 (1992), no. 5, 485–487.
- [13] A. R. Medghalchi, The second dual algebra of a hypergroup, Math. Z. 210 (1992), no. 4, 615–624.
- [14] S. Ouzomgi, Factorization and bounded approximate identities for a class of convolution Banach algebras, Glasg. Math. J. 28 (1986), no. 2, 211–214.
- [15] E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093–1100.
- [16] A. M. Sinclair, Continuous derivations on Banach algebras, Proc. Amer. Math. Soc. 20 (1969), no. 1, 166–170.
- [17] I. M. Singer and J. Wermer, Derivations on commutative normed algebras, Math. Ann. 129 (1955), 260–264.
- [18] A. I. Singh, L[∞]₀(G)* as the second dual of the group algebra L¹(G) with a locally convex toplogy, Michigan Math. J. 46 (1999), no. 1, 143–150.
- [19] M. Thomas, The image of a derivation is contained in the radical, Ann. of Math. 128 (1988), no. 3, 435–460.
- [20] J. Vukman, On left Jordan derivations of rings and Banach algebras, Aequationes Math. 75 (2008), no. 3, 260–266.

MOHAMMAD JAVAD MEHDIPOUR DEPARTMENT OF MATHEMATICS SHIRAZ UNIVERSITY OF TECHNOLOGY SHIRAZ 71555-313, IRAN *E-mail address*: mehdipour@sutech.ac.ir

ZAHRA SAEEDI DEPARTMENT OF MATHEMATICS SHIRAZ UNIVERSITY OF TECHNOLOGY SHIRAZ 71555-313, IRAN *E-mail address*: asetarehsorkh@yahoo.com