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THE EXTENDED REAL LINE AS A JULIA SET

Monireh Akbari and Maryam Rabii

Abstract. A recursive family {Fn} of holomorphic functions on the Rie-

mann sphere is defined and some elementary properties of this family is
described. Then the Julia set of Fn is computed. Finally this family as

a real recursive family is studied and it is shown that Fn is chaotic on a

specific subset of R.

1. Introduction and preliminaries

Suppose Ĉ is the Riemann sphere and f : Ĉ → Ĉ is a non-constant holo-
morphic map. By fn we mean f ◦ · · · ◦ f︸ ︷︷ ︸

n times

. The point p ∈ Ĉ is an attracting

(repelling) fixed point of f , if f(p) = p and |f ′(p)| < 1 (|f ′(p)| > 1). The
basin of attraction of p is the set of all points z such that limn→∞ fn(z) = p.
Generally, if fk(p) = p for some k ≥ 1, then p is called a periodic point of f .

The Fatou set of f consists of all points z ∈ Ĉ that have an open neighbor-
hood on which {fn} forms a normal family. The Julia set of f , denoted by
J(f), is the complement of the Fatou set. It is clear from the definition that the

Fatou set is an open subset of Ĉ and therefore the Julia set is a closed subset of
Ĉ. The attracting fixed points belong to the Fatou set and the repelling fixed
points belong to the Julia set and also the boundary of the basin of attraction
of a fixed point is a subset of the Julia set.

Holomorphic functions on the Riemann sphere have various Julia sets with
very different shapes. Among these different sets, circles, the extended real
line and closed intervals are well-known smooth Julia sets. More specifically
the following results are known.

• The Julia set of a polynomial of degree d ≥ 2 is homeomorphic to a
closed interval if and only if it is linearly conjugate to ±φd, where φd
is the Chebyshev polynomial of degree d (see [3, Lemma B.3]).
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• If the Julia set of a rational function f(z) of degree d ≥ 2 is the unit
circle, then

f(z) = α
z − a1
1− a1z

z − a2
1− a2z

· · · z − ad
1− adz

where aj ∈ Ĉ \ ∂D, α ∈ ∂D, and D is the unit disc (see [4, Lemma
15.5]).

• The Julia set of

f(z) = αz
z − a1
1− a1z

z − a2
1− a2z

· · · z − ad
1− adz

where aj ∈ D, α ∈ ∂D, and d ≥ 1, is the unit circle (see [4, page 73]).
• If f is a polynomial of degree d ≥ 2, then its Julia set is the unit circle

if and only if f(z) = azd, where a ∈ ∂D (see [1, Theorem 1.3.1]).

It is also known that if f and g are two commuting (f ◦ g = g ◦ f) rational
functions of degree at least two, then J(f) = J(g) (see [1, Theorem 4.2.9]).
Another basic result states that if f and g are two rational functions that are
conjugate under a Möbius function ϕ (i.e., f ◦ϕ = ϕ◦g), then the image of the
Julia set of g under ϕ is the Julia set of f (see [1, Theorem 3.1.4]). Therefore
under suitable conjugacy, some of the above statements about the unit circle
can be modified to R ∪ {∞}.

Recall that a continuous function f : X → X, where X is a metric space
with metric d, is called chaotic if the following three conditions hold:

1. The set of the periodic points of f is dense in X.
2. f is topologically transitive (i.e., for every pair of open subsets U , V of

X there exists k > 0 such that fk(U) ∩ V 6= ∅).
3. f has sensitive dependence on initial conditions (i.e., there exists δ > 0

such that for any x ∈ X and any open subset U containing x, there exist y ∈ U
and n ≥ 0 such that d(fn(x), fn(y)) > δ).

See [2, page 50] for more details.
In this paper we introduce a family {Fn} of rational functions recursively

and show that the Julia set of Fn is R ∪ {∞}. We use two different methods
to compute the Julia set of Fn, firstly by exploiting the commutativity of this
family and secondly by establishing the conjugacy of this family with another
well known family of functions. Finally, we study Fn as a real function and
show that it is chaotic on a specific subset of R.

2. The recursive family and its properties

In this section we will define a family of rational functions {Fn} on Ĉ recur-
sively and determine their Julia sets.

Recall that the Newton iteration function associated to f(z) = z2 + 1, that

is N(z) = z − f(z)
f ′(z) = z2−1

2z , satisfies the relation

F2(z) =
zF1(z)− 1

z + F1(z)
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for F1(z) = z and F2(z) = N(z). Motivated by this observation we define the
following recursive family.

Let F1(z) = z and, for n ≥ 2,

Fn(z) =
zFn−1(z)− 1

z + Fn−1(z)
.(2.1)

Note that if Fn−1(z0) =∞, then

Fn(z0) = lim
z→z0

zFn−1(z)− 1

z + Fn−1(z)
.

The following lemmas describe some properties of this family.

Lemma 2.1. For k ≥ 1 and n > k,

Fn(z) =
Fk(z)Fn−k(z)− 1

Fk(z) + Fn−k(z)
.

Proof. We proceed by induction on k. The case k = 1 is (2.1). Assume for
k > 1 and n > k we have

Fn(z) =
Fk(z)Fn−k(z)− 1

Fk(z) + Fn−k(z)
.(2.2)

Now suppose n > k + 1. Then Fn satisfies (2.2). From (2.1) we obtain

Fk(z) =
zFk+1(z) + 1

z − Fk+1(z)
.

By employing the latter for Fk and the definition of Fn−k in (2.2), the result
follows by straightforward computations. �

Lemma 2.2. For n ≥ 1 and k ≥ 1, Fn ◦ Fk = Fnk.

Proof. We proceed by induction on n. The case n = 1 and k ≥ 1 follows from
the definition of F1. By employing (2.1), the induction hypothesis, and Lemma
2.1, we have

Fn+1(Fk(z)) =
Fk(z)Fn(Fk(z))− 1

Fk(z) + Fn(Fk(z))

=
Fk(z)Fnk(z)− 1

Fk(z) + Fnk(z)

= Fnk+k(z). �

Corollary 2.3. For n ≥ 1 and k ≥ 1, Fn ◦ Fk = Fk ◦ Fn.

Lemma 2.4. For n ≥ 2, degree of Fn is at least 2.

Proof. Suppose Fn(z) = pn(z)
qn(z)

where pn and qn are two polynomials. It can be

shown by induction that pn(z) = zpn−1(z) − qn−1(z) and qn(z) = zqn−1(z) +
pn−1(z) where p1(z) = z and q1(z) = 1. Since deg p1 > deg q1 and deg pn =
deg pn−1 + 1, therefore deg pn > deg qn and consequently Fn(∞) = ∞. By
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induction on n and employing (2.1) one can easily see that ±i are the fixed
points of Fn. Thus degFn ≥ 2 unless Fn(z) = z that is impossible. �

The following theorem will determine the Julia set of Fn.

Theorem 2.5. For n ≥ 2, the Julia set of Fn is R ∪ {∞}.

Proof. We first show that the Julia set of F2(z) = z2−1
2z is R ∪ {∞}. The

points z = ±i are attracting fixed points and ∞ is a repelling fixed point of
F2. Therefore ∞ belongs to J(F2) and the set of all iterated preimages of ∞,

{z ∈ Ĉ : Fn2 (z) = ∞ for some n ≥ 0}, is everywhere dense in J(F2) (see [4,

Corollary 4.13]). Since all of the solutions of z2−1
2z = c for real c are real, we

conclude that J(F2) ⊆ R∪{∞}. Since the boundary of the basins of attraction
of the fixed points i and −i are subsets of J(F2), the upper half-plane is the
basin of attraction of i and the lower half-plane is the basin of attraction of −i.
Therefore J(F2) = R ∪ {∞}.

On the other hand, by Corollary 2.3, F2 ◦ Fn = Fn ◦ F2. Thus J(Fn) =
J(F2) = R ∪ {∞} (see [1, Theorem 4.2.9]). �

By differentiating of (2.1) one can see that the fixed points ±i are attracting.
By applying these fixed points we are going to prove the following theorem.

Theorem 2.6. Fn and zn are conjugate.

Proof. Suppose ϕ is a Möbius function such that ϕ(0) = −i and ϕ(∞) = i.
Thus ϕ(z) = i z−az+a , for some a ∈ C. By induction on n and employing (2.1),

we conclude that Fn ◦ ϕ(z) = i z
n+a2

zn−a2 . It can be shown that Fn ◦ ϕ(z) = ϕ(zn)

if and only if a = −1. Thus Fn and zn are conjugate under ϕ(z) = i z+1
z−1 . �

Remark 1.

• In the proof of Theorem 2.6, it is possible to suppose ϕ(0) = i and
ϕ(∞) = −i.
• Since the image of the unit circle under ϕ in Theorem 2.6 is the ex-

tended real line, it is possible to conclude Theorem 2.5 from Theorem
2.6.

Now we are going to describe Fn(z) = pn(z)
qn(z)

more specifically. By Theorem

2.6, Fn is a rational function of degree n and pn and qn are two relatively prime
polynomials of degree n and n−1, respectively. The following proposition shows
that Fn has n distinct real roots and n− 1 real poles.

Proposition 2.7. All the roots of qn and pn are real and distinct.

Proof. According to the above discussion, Fn(z) = ∞ if only if qn(z) = 0 or
z =∞. On the other hand Fn(z) =∞ if and only if ϕ((ϕ−1(z))n) =∞. Since
ϕ(1) =∞, therefore (ϕ−1(z))n = 1. Thus ϕ−1(z) must be an n-th root of unity

(i.e., 1, e
2πi
n , . . . , e

2(n−1)πi
n ) and consequently z = ∞, ϕ(e

2πi
n ), . . . , ϕ(e

2(n−1)πi
n ).

Therefore qn(z) = 0 has n− 1 distinct roots that are real.
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Figure 1. The graph of Fn, for n = 3, 4, 5

In addition, pn(z) = 0 if and only if Fn(z) = 0. Since ϕ(−1) = 0, the similar
argument shows that Fn(z) = 0 if and only if (ϕ−1(z))n = −1. Thus pn has n
real and distinct roots. �

Figure 1 illustrates the roots and poles of Fn(z) for n = 3, 4, 5.

3. Fn as a real rational function

In this section we consider Fn as a real function and show that Fn is chaotic
on some subset of R. Figure 1 shows the graph of Fn, for n = 3, 4, 5.
Since Fn is not defined on the roots of qn as a real function, we are only able
to study the dynamics of Fn on the set R \Bn, where

Bn =

∞⋃
k=0

F−kn

({
x ∈ R : x is a pole of Fn

})
=

∞⋃
k=1

F−kn (∞).

Definition of Bn shows that Fn(R \Bn) ⊆ R \Bn.

On the other hand ϕ(eiθ) = i e
iθ+1
eiθ−1 = cot θ2 . Thus if C(θ) = cot θ2 and

Dn : S1 → S1 is given by

Dn(θ) = nθ (mod 2π),

where S1 is the unit circle, then the relation Fn ◦ ϕ(z) = ϕ(zn) can be written
as Fn ◦ C(θ) = C ◦Dn(θ) when z = eiθ. Therefore if we reduce the domain of
Dn to S1 \An, where An = ∪k≥1D−kn (0), then the diagram

S1 \An
Dn−−−−→ S1 \An

C(θ)

y yC(θ)

R \Bn −−−−→
Fn

R \Bn

(3.1)

is commutative. Since An is dense in S1, C(An \ {0}) = Bn, and C(θ) is a
homeomorphism, if 0 < θ < 2π, then we have the following result.

Proposition 3.1. Bn is dense in R.
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It is known that Dn : S1 → S1 is chaotic (see [2, page 50]). Now we will
show that

Theorem 3.2. Fn is chaotic on R \Bn.

Proof. First we will show that Dn : S1 \An → S1 \An is chaotic. Note that

(1) The periodic points of Dn are dense in S1. The points of An are
eventually maps to 0, so x 6= 0 and x ∈ An is not a periodic point of
Dn. Thus the periodic points of Dn are dense in S1 \An.

(2) For the nonempty open subset U of S1, there is k ∈ N such that
Dk
n(U) = S1. Therefore Dk

n(U \An) = S1 \An since Dn(An) = An. If
V is a nonempty open subset of S1, then Dk

n(U \ An) ∩ (V \ An) 6= ∅.
This implies that Dn is transitive on S1 \An.

(3) Since Dk
n(U \An) = S1 \An for some k ∈ N, if x ∈ U \An, then there

is y ∈ U \An such that d(Dk
n(x), Dk

n(y)) > 1/2. Thus Dn has sensitive
dependence on initial conditions on S1 \An.

Therefore Dn is chaotic on S1 \An.
Since the diagram (3.1) is commutative, the density of the periodic points

of Fn and topological transitivity of Fn are concluded easily from the above
discussion. Also for each open set U in R \ Bn there is k ∈ N such that
F kn (U) = R \ Bn. Thus Fn has sensitive dependence on initial conditions on
R \Bn. �
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