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PERMANENCE OF A TWO SPECIES DELAYED

COMPETITIVE MODEL WITH STAGE STRUCTURE

AND HARVESTING

Changjin Xu and Yusen Zu

Abstract. In this paper, a two species competitive model with stage
structure and harvesting is investigated. By using the differential inequal-
ity theory, some new sufficient conditions which ensure the permanence
of the system are established. Our result supplements the main results
of Song and Chen [Global asymptotic stability of a two species compet-
itive system with stage structure and harvesting, Commun. Nonlinear
Sci. Numer. Simul. 19 (2001), 81–87].

1. Introduction

The dynamic relationship between predators and their preys has long been
and will continue to be one of the dominant themes in both ecology and math-
ematical ecology due to its universal existence and importance [2]. Dynamic
behavior of predator-prey models has been studied by many authors. It is
well known that permanence is an important topic in predator-prey mod-
els. Moreover, in many applications, the nature of permanence is of great
interest. Recently, Fan and Li [12] investigated permanence of a delayed
ratio-dependent predator-prey model with a Holling type functional response.
Chen [5] studied theoretically on the permanence of a discrete n-species food-
chain system with delay. Chen [4] analyzed the permanence and global at-
tractivity of Lotka-Volterra competition system with feedback control. Zhao
and Teng et al. [26] addressed the permanence criteria for a delayed discrete
nonautonomous-species Kolmogorov system. Jiang [29] focused on the per-
manence and extinction for nonantonomous Lotka-Volterra system. For more
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research on the permanence behavior of predator-prey models, one can see
[8, 11, 13, 14, 15, 17, 18, 23]. Here we must point out that most of literatures
on these predator-prey models are only connected with parameters which are
independent of time delay, while in most applications of delay predator-prey
models in population dynamics, the need of incorporation of a time delay is
often the result of existence of some stage structure [1, 2, 9]. Indeed, every pop-
ulation goes through some distinct life stages [16, 24]. Since the stage survival
rate is often a function of time delay, it is easy to conceive that these mod-
els will inevitably involve some delay-dependent parameters. Recently, the re-
search work on the permanence of predator-prey systems with delay-dependent
parameters is scare. One can see [3, 6, 7, 21, 27].

In 2001, Song and Chen [25] investigated the global asymptotic stability of
the following two species competitive system with stage structure and harvest-
ing

(1)























dx1(t)

dt
= αx2(t)− γx1(t)− αe−γτx2(t− τ),

dx2(t)

dt
= αe−γτx2(t− τ)− βx2

2(t)− a1x2(t)y(t)− Ex2(t),

dy(t)

dt
= y(t)(r1 − a2x2(t)− by(t)),

where x1(t) and x2(t) denote the immature and mature population densities
of the species one, respectively, to model stage structured population growth,
and y(t) represents the density of the species two. The term αe−γτx2(t − τ)
represents the immature who was born at time t − τ (i.e., αx2(t− τ)) and
survives at the time t (with the immature death rate γ) and therefore represents
the transformation from immature to mature. The model is obtained under
the assumptions as follows:

(A1) The species one: the birth rate into the immature population is pro-
portional to the existing mature population with a proportionality constant
α > 0; the death rate of the immature population is proportional to the exist-
ing immature population with a proportionality constant γ > 0; the death rate
of mature population is of a logistic nature, i.e., it is proportional to the square
of the population with a proportionality constant β > 0. Only the mature
population has competitive ability, and competitive coefficient a1 > 0. E is the
harvesting effort.

(A2) The species two: the growth rate of the species is Lotka-Volterra nature,
r1 > 0, a2 > 0, b > 0.

(A3) xi(0) > 0, xi(t) ≥ 0 (i = 1, 2) on −τ ≤ t ≤ 0, y(0) > 0
We know that any biological or environment parameters are naturally sub-

ject to fluctuation in time [28]. In 1977, Cushing [10] pointed out that it is
necessary and important to consider models with periodic ecological param-
eters or perturbations which might be quite naturally exposed (for example,
those due to season effects of weather, food supply, mating habits, hunting or
harvesting seasons, etc.). Thus the assumption of periodicity of the parameters
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is a way of incorporating the periodicity of the environment. In addition, we
consider that the sum of prey species born at time t−τ is α(t−τ)x2(t−τ), the
sum of prey species that still alive at time t is α(t− τ)e−γ(t)τx2(t− τ). Based
on the discussion above, system (1) can be modified as follows
(2)






















dx1(t)

dt
= α(t)x2(t)− γx1(t)− α(t− τ)e−γτx2(t− τ),

dx2(t)

dt
= α(t− τ)e−γτx2(t− τ)− β(t)x2

2(t)− a1(t)x2(t)y(t) − E(t)x2(t),

dy(t)

dt
= y(t)(r1(t)− a2(t)x2(t)− b(t)y(t)).

The initial conditions for system (2) take the form of
(3)
xi(θ) = φi(θ) ≥ 0, y(θ) = ϕ(θ) ≥ 0, φi(0) > 0, ϕ(0) > 0, i = 1, 2, θ ∈ [−τ, 0],

where (φ1(θ), φ2(θ), ϕ(θ)) ∈ C([−τ, 0], R3
+0). For continuity of initial condi-

tions, we require

x1(0) =

∫ 0

−τ

α(s)φ2(s)e
γτds.

The principal object of this article is to explore the dynamics of system (2)
with the initial conditions (3). We apply the differential inequality theory to
study the permanence of system (2) with the initial conditions (3).

The remainder of the paper is organized as follows: in Section 2, basic defini-
tions and lemmas are given and some sufficient conditions for the permanence
of the two species delayed competitive model with stage structure and harvest-
ing in consideration are established. In Section 3, we give an example which
shows the feasibility of the main results. Conclusions are presented in Section
4.

2. Permanence

For convenience in the following discussion, we always use the notations:

f l = inf
t∈R

f(t), fu = sup
t∈R

f(t),

where f(t) is a continuous function. In order to obtain the main result of this
paper, we shall first state the definition of permanence and several lemmas
which will be useful in the proving the main result.

Definition 2.1 ([20]). We say that system (2) is permanent if there are positive
constants M and m such that for each positive solution (x1(t), x2(t), y(t)) of
system (2) satisfies

m ≤ lim
t→+∞

inf xi(t) ≤ lim
t→+∞

supxi(t) ≤ M, i = 1, 2,

m ≤ lim
t→+∞

inf y(t) ≤ lim
t→+∞

sup y(t) ≤ M.
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Lemma 2.1 ([22]). If a > 0, b > 0 and ẋ ≥ x(b − ax), when t ≥ 0 and

x(0) > 0, we have

lim
t→+∞

inf x(t) ≥
b

a
.

If a > 0, b > 0 and ẋ ≤ x(b − ax), when t ≥ 0 and x(0) > 0, we have

lim
t→+∞

supx(t) ≤
b

a
.

Lemma 2.2 ([19]). Consider the following equation:

u̇(t) = au(t− τ)− bu(t)− cu2(t),

where a, b, c > 0, u(t) > 0 for −τ ≤ t ≤ 0, we have

(i) If a > b, then limt→+∞ u(t) = a−b
c

.

(ii) If a < b, then limt→+∞ u(t) = 0.

Now we state our permanence result for system (2).

Theorem 2.1. Let M2 and M3 be defined by (5), and (8), respectively. Suppose
that the following conditions

αle−γτ > au1M3 + Eu, rl1 > au2M2

hold. Then system (2) is permanent, that is, there exist positive constants

mi,Mi (i = 1, 2, 3) which are independent of the solution of system (2), such
that for any positive solution (x1(t), x2(t), y(t)) of system (2) with the initial

condition xi(0) > 0 (i = 1, 2), y(0) > 0, one has

mi ≤ lim
t→+∞

inf xi(t) ≤ lim
t→+∞

supxi(t) ≤ Mi, i = 1, 2,

m3 ≤ lim
t→+∞

inf y(t) ≤ lim
t→+∞

sup y(t) ≤ M3.

Proof. It is easy to see that system (2) with the initial value condition (x1(0),
x2(0), y(0)) has positive solution (x1(t), x2(t), y(t)) passing through (x1(0),
x2(0), y(0)). Let (x1(t), x2(t), y(t)) be any positive solution of system (2) with
the initial condition (x1(0), x2(0), y(0)). It follows from the second equation of
system (2) that

dx2(t)

dt
= α(t − τ)e−γτx2(t− τ)− β(t)x2

2(t)− a1(t)x2(t)y(t)− E(t)x2(t)

≤ α(t − τ)e−γτx2(t− τ)− β(t)x2
2(t)− E(t)x2(t)

≤ αue−γτx2(t− τ) − Elx2(t)− βlx2
2(t).(4)

It follows from (4) and Lemma 2.2 that

(5) lim
t→+∞

supx2(t) ≤
αue−γτ

βl
:= M2.

For any positive constant ε > 0, it follows from (5) that there exists a T1 > 0
such that for all t > T1,

(6) x2(t) ≤ M2 + ε.
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It follows from the third equation of system (2) that

dy(t)

dt
= y(t)(r1(t)− a2(t)x2(t)− b(t)y(t))

≤ y(t)(r1(t)− b(t)y(t))

≤ y(t)(ru1 − bly(t)).(7)

It follows from (7) and Lemma 2.1 that

(8) lim
t→+∞

sup y(t) ≤
ru1
bl

:= M3.

For any positive constant ε > 0, it follows from (8) that there exists a T2 > 0
such that for all t > T2,

(9) y(t) ≤ M3 + ε.

For any positive constant ε > 0 and T3 > T2, from the second equation of
system (2), we have

dx2(t)

dt
= α(t − τ)e−γτx2(t− τ)− β(t)x2

2(t)− a1(t)x2(t)y(t)− E(t)x2(t)

≥ αle−γτx2(t− τ) − [au1 (M3 + ε) + Eu]x2(t)− βux2
2(t).(10)

Thus, as a direct corollary of Lemma 2.1, according to (10), one has

(11) lim
t→+∞

inf x2(t) ≥
αle−γτ − [au1 (M3 + ε) + Eu]

βu
.

Setting ε → 0, it follows that

(12) lim
t→+∞

inf x2(t) ≥
αle−γτ − (au1M3 + Eu)

βu
:= m2.

For any positive constant ε > 0 and T4 > T1, from the third equation of system
(2), we have

dy(t)

dt
= y(t)(r1(t)− a2(t)x2(t)− b(t)y(t))

≥ y(t)(rl1 − au2 (M2 + ε)− buy(t)).(13)

Thus, as a direct corollary of Lemma 2.1, according to (13), one has

(14) lim
t→+∞

inf y(t) ≥
rl1 − au2 (M2 + ε)

bu
.

Setting ε → 0, it follows that

(15) lim
t→+∞

inf y(t) ≥
rl1 − au2M2

bu
:= m3.

Noting that the first equation of system (2) is equal to the following integration
form

(16) x1(t) =

∫ t

t−τ

α(s)e−γ(t−s)x2(s)ds.
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For any small positive constant ε > 0, without loss of generality, we assume
that ε < 1

2m2, it follows from (5) and (12) that there exists a T5 > T3 such
that

(17) m2 − ε < x2(t) < M2 + ε for all t > T5.

Thus for t > T5 + τ , it follows from (16) and (17) that

(18) x1(t) ≤

∫ t

t−τ

αu(M2 + ε)e−γ(t−s)ds ≤
3αuM2

2γ
(1− e−γτ ) := M1

and

(19) x1(t) ≥

∫ t

t−τ

αl(m2 − ε)e−γ(t−s)ds ≥
3αlm2

2γ
(1− e−γτ ) := m1.

Obviously, (5), (8), (12), (18) and (19) show that system (2) is permanent. The
proof of Theorem 2.1 is complete. �

3. Example

To illustrate the theoretical results, we consider the following example:

Example 3.1.

(20)






























dx1(t)

dt
= (60 + sin t)x2(t)− ln 3x1(t)− [60 + sin(t− 1)]e− ln 3x2(t− 1),

dx2(t)

dt
= [60 + sin(t− 1)]e− ln 3x2(t− 1)− (60 + cos t)x2

2(t)

−(5− cos t)x2(t)y(t) − (4 + sin t)x2(t),
dy(t)

dt
= y(t)(50 + cos t− (10 + cos t)x2(t)− (40− sin t)y(t)).

Corresponding to system (2), one has α(t) = 60 + sin t, γ = ln 3, τ = 1,
r1(t) = 50 + cos t, β(t) = 60 + sin t, a1(t) = 5 − cos t, a2(t) = 10 + cos t,
b(t) = 40−sin t, E(t) = 4+sin t. It is easy to see that αu = 61, αl = 59, au1 = 6,
au2 = 11, ru1 = 51, rl1 = 49, βl = 59, bl = 39, Eu = 5. Then M2 = 0.3446,
M3 = 1.3077, αle−γτ = 19.6667, au1M3 + Eu = 12.8462, au2M2 = 3.7906. Then
αle−γτ > au1M3 +Eu, rl1 > au2M2. Therefore all the conditions of Theorem 2.1
are satisfied which means that system (20) is permanent.

4. Conclusions

In this paper, we have investigated the dynamical behavior of a two species
delayed competitive model with stage structure and harvesting. Sufficient con-
ditions which ensure the permanence of the system are derived. It is shown
that delay has influence on the permanence of system. Thus delay is an im-
portant factor to decide the permanence of the system. An example shows the
feasibility of our main results.
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