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ON THE PERIOD OF β-EXPANSION OF PISOT OR SALEM

SERIES OVER Fq((x
−1))

Ghorbel Rim and Zouari Sourour

Abstract. In [6], it is proved that the lengths of periods occurring in
the β-expansion of a rational series r noted by Perβ(r) depend only
on the denominator of the reduced form of r for quadratic Pisot unit
series. In this paper, we will show first that every rational r in the
unit disk has strictly periodic β-expansion for Pisot or Salem unit basis
under some condition. Second, for this basis, if r = P

Q
is written in

reduced form with |P | < |Q|, we will generalize the curious property

“Perβ(
P
Q
) = Perβ(

1
Q
)”.

1. Introduction

The notion of β-expansions of real numbers was introduced by A. Rényi
[11]. Since then, their arithmetic, diophantine and ergodic properties have
been extensively studied by several researchers. In this paper, we consider an
analogue of this concept in algebraic function fields over finite fields. There are
striking analogies between these digit systems and the classical β-expansions
of real numbers. In order to pursue this analogy, we recall the definition of real
β-expansions and survey the problems corresponding to our results.

Let β be a fixed real number greater than 1 and let x be a positive real
number. A convergent series

∑
k≤n xkβ

k is called a β-representation of x if

x =
∑

k≤n

xkβ
k

and for all k the coefficient xk is a non-negative integer. If moreover for every
−∞ < N < n we have ∑

k≤N

xkβ
k < βN+1

the series
∑

k≤n xkβ
k is called the β-expansion of x. The β-expansion is

an analogue of the decimal or binary expansion of reals and we sometimes
use the natural notation dβ(x) = xnxn−1 · · ·x0.x−1 · · · . Every x ≥ 0 has
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a unique β-expansion which is found by the greedy algorithm [11]. We can
introduce lexicographic ordering on β-representations in the following way.
The β-representation xnβ

n + xn−1β
n−1 + · · · is lexicographically greater than

xkβ
k + xk−1β

k−1 + · · · , if k < n and for the corresponding infinite words we
have xnxn−1 · · · ≻ 0 · · · 00︸ ︷︷ ︸

(n−k)times

xkxk−1 · · · , where the symbol ≺ means the com-

mon lexicographic ordering on words in an ordered alphabet.
A β-expansion is finite if there exists m ≥ 1 such that xk = 0 holds for

all k ≥ m. We denote by Fin(β) the sets of real numbers in [0,1) with finite
β-expansions. A β-expansion is periodic if there exist p ≥ 1 and m ≥ 1 such
that xk = xk+p holds for all k ≥ m; if xk = xk+p holds for all k ≥ 1, then it
is purely periodic. We denote by Per(β) the sets of real numbers in [0,1) with
periodic β-expansions.

An easy argument shows that Per(β) ⊆ Q(β) ∩ [0, 1) for every real number
β > 1. In the statement [13], K. Schmidt showed that if β is a Pisot number
(an algebraic integer whose conjugates have modulus < 1), then Per(β) =
Q(β) ∩ [0, 1).

In the statement [8], S. Ito and H. Rao discussed the purely periodic β-
expansions and they characterized all reals in [0, 1) having purely periodic β-
expansions with Pisot unit base. Also S. Akiyama proved in the statement
[2] that if β verifies finiteness conditions (Fin(β) = Z[β−1] ∩ R+), then a
positive constant c exists in a way that every rational in [0, c) has a purely
periodic β-expansion. The cubic case produces unexpected results, as stated
by S. Akiyama in the statement [2], and more recently by B. Adamczewski, C.
Frougny, A. Siegel and W. Steiner in the statement [1].

In the real case and with a quadratic base β satisfied β2 = nβ + 1 for some
integer n ≥ 1, K. Schmidt [13] has given this theorem.

Theorem 1.1. Suppose that β satisfies β2 = nβ + 1 for some n ≥ 1. Then

every r ∈ Q ∩ [0, 1) has a strictly periodic β-expansion. If r = p
q
is written in

reduced form with 0 < p < q, then Perβ(
p
q
) = Perβ(

1
q
).

In [4] and [5], D. W. Boyd investigated the length of the period for some
Salem numbers of degree 4 and 6.

In the case of formal power series over finite fields, we have proved in [6]
and especially in the quadratic Pisot unit case that every rational r in the unit
disk has a strictly periodic β-expansion. If r = P

Q
is written in reduced form

with |P | < |Q|, the curious property “Perβ(
P
Q
) = Perβ(

1
Q
)” holds.

This paper is a continuation of this work which is organized as follows: In
Section 2, we define the field of formal power series over finite field as well
as the analogues to Pisot and Salem numbers. We will also define the β-
expansion algorithm for formal power series. In Section 3, we will prove that
every rational series have purely periodic β-expansions in Pisot or Salem unit
basis under some condition. We will also investigate some properties for the
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length of the period of the β-expansion of a rational series, avoiding difficult
computations of power series.

2. β-expansions in Fq((x
−1))

Let Fq be a finite field of q elements, Fq[x] the ring of polynomials with
coefficient in Fq, Fq(x) the field of rational functions, Fq(x, β) the minimal
extension of Fq containing x and β and Fq[x, β] the minimal ring containing x
and β. Let Fq((x

−1)) be the field of formal power series of the form:

f =
l∑

k=−∞

fkx
k, fk ∈ Fq

whereby

l = deg f :=

{
max{k : fk 6= 0} for f 6= 0;
−∞ for f = 0.

Define the absolute value

|f | =

{
qdeg f for f 6= 0;
0 for f = 0.

Then | · | is not archimedean. It fulfills the strict triangular inequality

|f + g| ≤ max (|f |, |g|) and

|f + g| = max (|f |, |g|) if |f | 6= |g|.

For f ∈ Fq((x
−1)) define the integer (polynomial) part [f ] =

∑l
k=0 fkx

k, where
the empty sum, as usual, is defined to be zero. Therefore [f ] ∈ Fq[x] and
(f − [f ]) ∈ M0, where M0 = {f ∈ Fq((x

−1)) : |f | < 1}.
We know that Fq((x

−1)) is complete with respect to the metric defined by

this absolute value. We denote by Fq((x−1)) an algebraic closure of Fq((x
−1)).

We note that the absolute value has a unique extension to Fq((x−1)). Abusing
a little the notations, we will use the same symbol | · | for the two absolute
values.

A Pisot (resp. Salem) element w ∈ Fq((x
−1)) is an algebraic integer over

Fq[x] such that |w| > 1 whose remaining conjugates in Fq((x−1)) have an ab-
solute value strictly smaller than 1 (resp., |w| > 1 whose remaining conjugates

in Fq((x−1)) have an absolute value strictly smaller than 1 and there exists at
least one conjugate wk such that |wk| = 1). In 1962 Bateman and Duquette [3]
introduced and characterized Pisot elements and Salem elements in the field of
formal power series. They obtained the following result.

Theorem 2.1. Let β ∈ Fq((x
−1)) be an algebraic integer over Fq[x] and

P (y) = yn −An−1y
n−1 − · · · −A1, Ai ∈ Fq[x],

be its minimal polynomial. Then

(i) β is a Pisot element if and only if |An−1| > max1≤i≤n−2 |Ai|.
(ii) β is a Salem element if and only if |An−1| = max1≤i≤n−2 |Ai|.



1050 G. RIM AND Z. SOUROUR

Let β, f ∈ Fq((x
−1)) with |β| > 1. A representation in base β (or β-

representation) of f is an infinite sequence (ai)i≥1, ai ∈ Fq[x] with

f =
∑

i≥1

ai
βi

.

A particular β-representation of f is called the β-expansion of f in base β,
denoted dβ(f). This is obtained by using the β-transformation Tβ in the unit
disk which is given by Tβ(f) = βf − [βf ]. Then dβ(f) = (ai)i≥1, where

ai = [βT i−1
β (f)].

An equivalent definition of the β-expansion can be obtained by a greedy
algorithm. This algorithm works as follows:

(1) r0 = f, ai = [βri−1] and ri = βri−1 − ai for all i ≥ 1.

The β-expansion of f will be noted as dβ(f) = (ai)i≥1.
Notice that dβ(f) is finite if and only if there is k ≥ 0 with T k(f) = 0, and

that dβ(f) is ultimately periodic if and only if there is some smallest p ≥ 0 (the

pre-period length) and s ≥ 1 (the period length) such that T p+s
β (f) = T p

β (f),

namely the period length will be denoted by Perβ(f).
Now, let f ∈ Fq((x

−1)) be an element, with |f | ≥ 1. Then there is a unique

k ∈ N having |β|k ≤ |f | < |β|k+1. Hence, | f
βk+1 | < 1. We can represent f by

shifting dβ(
f

βk+1 ) by k digits to the left. Therefore, if dβ(f) = 0.d1d2d3 · · · ,

then dβ(βf) = d1.d2d3 · · · .
Afterwards, we will use the following notation:

Per(β) = {f ∈ Fq((x
−1)) : dβ(f) is eventually periodic}.

Remark 2.2. In contrast to the real case, there is no carry occurring, when we
add two digits. So, if z, w ∈ Fq((x

−1)), then we have dβ(z+w) = dβ(z)+dβ(w)
digitwise and if c ∈ F∗

q , then dβ(cz) = cdβ(z).

In the case of the field of formal series, the following theorems were proved
independently by Hbaib-Mkaouar and Scheicher in the statements [12] and [7].

Theorem 2.3 ([7]). A β-representation (dj)j≥1 of f in the unit disk is its

β-expansion if and only if |dj | < |β| for j ≥ 1.

Theorem 2.4. β is a Pisot or Salem element if and only if Per(β) = Fq(x, β).

In the papers [9] and [10], metric results are established and the relation to
continued fractions is studied.

3. Results

We study specifically the length of the period by giving a lower bound of
the length of the period for every rational in Pisot or Salem unit base.
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Theorem 3.1. Let β be a Pisot or Salem unit series of algebraical degree d.
Then every rational f in the unit disk satisfies

Perβ(f) ≥
−d deg(f)

deg(β)
.

Proof. According to Theorem 2.4, we have f ∈ Per(β), so

dβ(f) = 0.a1 · · ·apap+1 · · · ap+s and ap 6= ap+s.

Hence

f =
a1
β

+ · · ·+
ap
βp

+
ap+1

βp+1
+ · · ·+

ap+s

βp+s
+

1

βs
(f −

a1
β

− · · · −
ap
βp

),

we get

f(1−
1

βs
) =

a1
β

+ · · ·+
ap
βp

+
ap+1

βp+1
+ · · ·+

ap+s

βp+s
+

1

βs
(−

a1
β

− · · · −
ap
βp

),

therefore

f(βs+p − βp) = a1β
s+p−1 + · · ·+ βap+s−1 + ap+s − a1β

p−1 − · · · − βap−1 − ap,

otherwise

f(βs+p−βp) = a1β
s+p−1+ · · ·+βap+s−1−a1β

p−1−· · ·−βap−1+(ap+s−ap).

Since a1, . . . , an+s ∈ Fq[x] and f ∈ Fq(x),

f((β(2))s+p − (β(2))p) = a1(β
(2))s+p−1 − · · · − (β(2))ap−1 + (ap+s − ap),

...

f((β(d))s+p − (β(d))p) = a1(β
(d))s+p−1 − · · · − (β(d))ap−1 + (ap+s − ap).

Multiplying each of the above, we obviously obtain

|βs+p(β(2))p . . . (β(d))p||f |d

= |
∏

1≤i≤d

(a1(β
(i))s+p−1 − · · · − (β(i))ap−1 + (ap+s − ap))|.

We can note that

H =
∏

1≤i≤d

(a1(β
(i))s+p−1 + · · ·+ (β(i))ap+s−1 − a1(β

(i))p−1−

· · · − (β(i))ap−1 + (ap+s − ap)).

To finish this proof we need the following fundamental lemma over symmetrical
polynomials:

Lemma 3.2. Let Q ∈ Fq[x][y] (i.e., with coefficient in Fq[x]) and F (Y1, Y2, . . .,
Yn) = Q(Y1)Q(Y2) · · ·Q(Yn). Then there exists a polynomial T to n variables

with coefficients in Fq[x] such that

F (Y1, Y2, . . . , Yn) = T (σ1, σ2, . . . , σn),
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where 



σ1 =

n∑

i=1

Yi,

σ2 =
∑

1≤i<j≤n

YiYj ,

σ3 =
∑

1≤i<j<k≤n

YiYjYk,

...

σn = Y1Y2 · · ·Yn.

Note moreover that the total degree of T is lower or equal to the degree of
Q.

Now return to the proof of Theorem 3.1. Applying Lemma 3.2, we deduce
that

|βs+p(β(2))p · · · (β(d))p||f |d ≥ 1.

Consequently, |βs||f |d ≥ 1, so s deg |β| + d deg |f | ≥ 0. Finally, we get the
result. �

The main problem involved in the rest of this section is the study of Perβ(f)

when β is a Pisot or Salem unit series and f = P
Q

is written in his reduced form

with |P | < |Q|. Thus, β is an algebraic integer, and we write Mβ(y) = yd +
Ad−1y

d−1+Ad−2y
d−2+ · · ·+A0 for the minimal polynomial of β. We have seen

in the second section that, r0 = f = 1
Q
(P +0β+0β2+ · · ·+0βd−1) = 1

Q
(B0,0+

B1,0β + · · ·+Bd−1,0β
d−1) with B0,0 = P and B1,0 = B2,0 = · · · = Bd−1,0 = 0.

We know that if dβ(f) = (ai)i≥1, then rn = fβn − a1β
n−1 − · · · − an =

1
Q
(B0,n +B1,nβ + · · ·+Bd−1,nβ

d−1) with B0,n, B1,n, . . . , Bd−1,n ∈ Fq[x]. So

we have

rn+1 = βrn − an+1

= β(
1

Q
(B0,n +B1,nβ + · · ·+Bd−1,nβ

d−1))− an+1

=
1

Q
(B0,nβ +B1,nβ

2 + · · ·+Bd−1,nβ
d − an+1Q)

=
1

Q
(B0,nβ +B1,nβ

2 + · · ·+Bd−1,n(−Ad−1β
d−1 − · · · −A0)− an+1Q).

Hence

rn+1 =
1

Q
[(−Bd−1,nA0 − an+1Q) + (B0,n − Bd−1,nA1)β + · · ·

+ (Bd−3,n −Bd−1,nAd−2)β
d−2 + (Bd−2,n −Bd−1,nAd−1)β

d−1]

=
1

Q
(B0,n+1 +B1,n+1β + · · ·+Bd−2,n+1β

d−2 +Bd−1,n+1β
d−1).
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This implies that Bn+1 = MBn + V , where

M =




0 0 . . . 0 0 −A0

1 0 . . . 0 0 −A1

0 1
. . . 0 0 −A2

...
. . .

. . .
. . .

...
...

0 0
. . . 1 0 −Ad−2

0 0 . . . 0 1 −Ad−1




, Bn =




B0,n

B1,n

B2,n

...
Bd−2,n

Bd−1,n




, and

V =




−an+1Q
0
0
...
0
0




.

Now, we define the application H by

H : Fq[x]
d −→ Fq[x]

d

P = (P1, . . . , Pd) 7−→ (Q1, . . . , Qd) = MP+ V,

and H̃ is induced by:

H̃ : (Fq[x]/QFq[x])
d −→ (Fq[x]/QFq[x])

d

(P̃1, . . . , P̃d) 7−→ (Q̃1, . . . , Q̃d),

with Fq[x]/QFq[x] is the group of polynomials (mod Q) and (Fq[x]/QFq[x])
d

the d-fold Cartesian product of copies of Fq[x]/QFq[x]. Since H̃ is a natural
automorphism over a finite group, so there exists n with

H̃n(P̃ , 0̃, . . . , 0̃) = (P̃ , 0̃, . . . , 0̃).

Let

s = min{ n > 0 ; H̃n(P̃ , 0̃, . . . , 0̃) = (P̃ , 0̃, . . . , 0̃)}.

Remark 3.3. For each rational f in the unit disk, we have Perβ(f) is a multiple
of s.

Indeed, if l = Perβ(f), then Hk+l(P, 0, . . . , 0) = Hk(P, 0, . . . , 0). Thus,

H̃k+l(P̃ , 0̃, . . . , 0̃) = H̃k(P̃ , 0̃, . . . , 0̃). Since H̃ is a one-to-one mapping, so

H̃ l(P̃ , 0̃, . . . , 0̃) = (P̃ , 0̃, . . . , 0̃). Consequently l is a multiple of s.
In the real case and in a very special form, i.e., β satisfied β2 = nβ + 1

for some integer n ≥ 1, K. Schmidt [13] has given an explicit formula for the
length of the periods occurring in the expansions of rational numbers. In order
to obtain this result in the formal power series to every Pisot or Salem unit
series, we can now state the main result of this section.
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Theorem 3.4. Let β be a Pisot (resp. Salem) unit series of minimal polyno-

mial Mβ(y) = yd+Ad−1y
d−1+Ad−2y

d−2+· · ·+A0 such that
∑

0≤i≤d−2 Ai = −1

(resp.
∑

0≤i≤d−1 Ai = −1). Then every rational in the unit disk has a purely

periodic β-expansion.

Proof. We have Mβ(y) = yd + Ad−1y
d−1 + Ad−2y

d−2 + · · · + A0 the minimal
polynomial of β. We define inductively the sequences: (C1,k), . . . , (Cd−1,k),
(D1,k), . . . , (Dd−1,k) and (U0,k), . . . , (Ud−1,k) of polynomials as follows. Let us
have

Ud−1,0 = P, Ud−2,0 = · · · = U0,0 = 0, D1,0 = · · · = Dd−1,0 = 0 and

C1,0 = · · · = Cd−1,0 = 0.

We put U0,k+1 = −A0Ud−1,k and

Dd−1,k+1 = Ud−2,k −Ad−1Ud−1,k = Ud−1,k+1 +QCd−1,k+1,

Dd−2,k+1 = Ud−3,k −Ad−2Ud−1,k = Ud−2,k+1 +QCd−2,k+1,

Dd−3,k+1 = Ud−4,k −Ad−3Ud−1,k = Ud−3,k+1 +QCd−3,k+1,

...

D1,k+1 = U0,k −A1Ud−1,k = U1,k+1 +QC1,k+1,

such that Ud−1,k+1, . . . , U1,k+1 are respectively the rest of the Euclidean di-
vision of Dd−1,k+1, . . . , D1,k+1 by Q. This induction process yields sequences
((C1,k), . . . , (Cd−1,k) : k ≥ 0), ((D1,k), . . . , (Dd−1,k) : k ≥ 0) and ((U0,k), . . .,
(Ud−1,k) : k ≥ 0) with the following properties:

For all 0 ≤ i ≤ d− 1, |Ui,k| < |Q|.

For all 1 ≤ i ≤ d− 1, |Di,k| < |Ai||Q|.

Thus,

for all 1 ≤ i ≤ d− 1, |Ci,k| < |Ai| = |β|.

Consequently, we have

(U0,0, . . . , Ud−2,0, Ud−1,0) = (0, . . . , 0, P ) and


Ũ0,k+1

Ũ1,k+1

Ũ2,k+1

...

˜Ud−2,k+1

˜Ud−1,k+1




= H̃




Ũ0,k

Ũ1,k

Ũ2,k

...

Ũd−2,k

Ũd−1,k




.

From our construction, we have H̃d−1(P̃ , 0̃, . . . , 0̃) = (0̃, . . . , 0̃, P̃ ) which implies

H̃s(0̃, . . . , 0̃, P̃ ) = (0̃, . . . , 0̃, P̃ ). Therefore we have for all 0 ≤ i ≤ d − 1,
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Ũi,k+s = Ũi,k for every k ≥ 0. So for all 0 ≤ i ≤ d− 1, Ui,k+s = Ui,k, hence for
all 1 ≤ i ≤ d − 1, Ci,k+s = Ci,k for every k ≥ 0. To finish this proof we need
only to show the following lemma:

Lemma 3.5. For n ≥ 1, in the Pisot case, we have

(2)
P

Q
=

n∑

k=1

Cd−2,k + · · ·+ C1,k

βk−1
+

β−n+1

Q
(Ud−2,n + · · ·+ U0,n).

(resp. in the Salem case, we have

(3)
P

Q
=

n∑

k=1

Cd−1,k + · · ·+ C1,k

βk−1
+

β−n+1

Q
(Ud−1,n + · · ·+ U0,n).)

Proof. We start showing this lemma by induction for the Pisot case: We have

Cd−2,1 + · · ·+ C1,1 +
1

Q
(Ud−2,1 + · · ·+ U0,1)

=
(Cd−2,1Q+ Ud−2,1) + · · ·+ (C1,1Q+ U1,1) + U0,1

Q
.

In addition, we have

Cd−2,1Q+ Ud−2,1 = −Ad−2P,

...

C1,1Q+ U1,1 = −A1P,

U0,1 = −A0P.

So

Cd−2,1 + · · ·+ C1,1 +
1

Q
(Ud−2,1 + · · ·+ U0,1) =

P

Q
(−Ad−2 − · · · −A0) =

P

Q
.

Consequently, (2) holds for n = 1. Suppose (2) holds for n, then it is easily
confirmed that (2) holds for n+ 1. Thus, (2) holds for all n ≥ 1. In the same
manner with this proof, we show (3) for the Salem case. �

Let us return to the proof of Theorem 3.4: As we apply the limit (n → ∞)
for the expression of Lemma 3.5, we get

P

Q
=

n∑

k=1

Cd−2,k + · · ·+ C1,kβ
k−1

because
∣∣∣β

−n+1

Q
(Ud−2,n + · · ·+ U0,n)

∣∣∣ < 1. Thus, obviously we obtain

P

Q
=

∑

k≥1

Cd−2,k + · · ·+ C1,k

βk−1
.

Since |Ci,k| < |β| and Ci,k+s = Ci,k for all k ≥ 1 and 1 ≤ i ≤ d− 1, according

to Theorem 2.3, P
Q

has a purely periodic β-expansions of period s.
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With the same manner as the Pisot case, we prove that P
Q

has a purely

periodic β-expansions of period s in the Salem case. �

Corollary 3.6. Let β be a Pisot (resp. Salem) unit series of minimal polyno-

mial Mβ(y) = yd+Ad−1y
d−1+Ad−2y

d−2+· · ·+A0 such that
∑

0≤i≤d−2 Ai = −1

(resp.
∑

0≤i≤d−1 Ai = −1) and (P,Q) ∈ Fq[x]
2 with |P | < |Q|. Then

Perβ(
P

Q
) = s = min{ n > 0 ; H̃n(P̃ , 0̃, . . . , 0̃) = (P̃ , 0̃, . . . , 0̃)}.

Proof. As we have the β-expansion of P
Q
is purely periodic of period s according

to Theorem 3.4 and Perβ(
P
Q
) is a multiple of s, we conclude that

Perβ(
P

Q
) = s = min{ n > 0 ; H̃n(P̃ , 0̃, . . . , 0̃) = (P̃ , 0̃, . . . , 0̃)}.

�

Corollary 3.7. Let β be a Pisot (resp. Salem) unit series of minimal polyno-

mial Mβ(y) = yd+Ad−1y
d−1+Ad−2y

d−2+· · ·+A0 such that
∑

0≤i≤d−2 Ai = −1

(resp.
∑

0≤i≤d−1 Ai = −1) and (P,Q) ∈ Fq[x]
2 with |P | < |Q| and P ∧Q = 1.

Then

Perβ(
P

Q
) = Perβ(

1

Q
).

Proof. Let Perβ(
P
Q
) = min{ n > 0 ; H̃n(P̃ , 0̃, . . . , 0̃) = (P̃ , 0̃, . . . , 0̃)} and since

P ∧Q = 1 then P̃ is invertible in Fq[x]/QFq[x]. Hence,

min{ n > 0 ; H̃n(P̃ , 0̃, . . . , 0̃) = (P̃ , 0̃, . . . , 0̃)}

= min{ n > 0 ; H̃n(1̃, 0̃, . . . , 0̃) = (1̃, 0̃, . . . , 0̃)}.

From the well known properties of automorphisms of finite abelian groups we
can now conclude the following statement

Perβ(
P

Q
) = Perβ(

1

Q
).

�
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