References
- Ahmad, S., Irons, B. M., & Zienkiewicz, O. C. (1970). Analysis of thick and thin shell structures by curved finite elements. Int. J. Num. Meth. Engng., 2, 419-451. https://doi.org/10.1002/nme.1620020310
- Benson, D. J., Bazilevs, Y., Hsu, M. C., & Hughes, T. J. R. (2010). Isogeometric shell analysis: The Reissner-Mindlin shell. Comput. Methods Appl. Mech. Engrg., 199, 276-289. https://doi.org/10.1016/j.cma.2009.05.011
- Bogner, F. K., Fox, R. L., & Schmit, L. A. (1965). The generation of inter-element compatible stiffness and mass matrices by the use of interpolation formulae. Proc. Conf. Matrix Melh. Srruct. Anal. Wright-Patterson AFB.
- Chattopadhyay, B., Sinha, P. K., & Mukhopadhyay, M. (1995). Geometrically nonlinear analysis of composite stiffened plates using finite elements. Composite Structures, 31, 107-118. https://doi.org/10.1016/0263-8223(95)00004-6
- Cottrell, J. A., Hughes, T. J. R., & Bazilevs, Y. (2009). Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley, Chichester.
- Crisfield, M. A. (1981). A fast incremental/iterative solution procedure that handles snap-through. Computers and Structures, 13, 55-62. https://doi.org/10.1016/0045-7949(81)90108-5
- Dornisch, W., Klinkela, S., & Simeon, B. (2013). Isogeometric Reissner-Mindlin shell analysis with exactly calculated director vectors. Comput. Methods Appl. Mech. Engrg., 253, 491-504. https://doi.org/10.1016/j.cma.2012.09.010
- Figueiras, J. A. (1983). Ultimate load analysis of anisotropic and reinforced concrete plates and shells. Ph.D. Thesis, Department of Civil Engineering, University College of Swansea.
- Hinton, E., & Owen, D. R. J. (1984). Finite element software for plates and shells. Swansea, UK, Pineridge Press, 235-273.
- Horrigmoe, G., & Bergan, P. G. (1978). Nonlinear analysis of free-form shells by flat finite elements. Comput. Methods Appl. Mech. Eng., 16, 11-35. https://doi.org/10.1016/0045-7825(78)90030-0
- Hughes, T. J. R., Cottrell, J. A., & Bazilevs, Y. (2005). Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Engrg., 194, 4135-4195. https://doi.org/10.1016/j.cma.2004.10.008
- Lee, S. J., & Kim, H. R. (2012). Analysis of plates using isogeometric approach based on Reissner-Mindlin Theory. J. of Atchitectual Institute of Korea, Structure & Consttuction, 28(9), 75-82.
- Levy, S. (1972). Square plate with clamped edges under normal pressure producing large deflection. NACA, Tech. Note 847.
- Parisch, H. (1981). Large displacement of shells including material nonlinearities. Comput. Methods Appl. Mech. Eng., 27, 183-214. https://doi.org/10.1016/0045-7825(81)90149-3
- Park, K. S., & Lee, S. J. (2014). Linear Aanalysis of Continuum Shells Using Isogeometric Degenerated Shell Element. J. of Atchitectual Institute of Korea, Structure & Consttuction, 30(10), 3-10.
- Pica, A., Wood, R. D., & Hinton, E. (1980). Finite Element Analysis of geometrically non-linear plate bending behaviour using a Mindlin formulation. Comput Struct., 11, 203-215. https://doi.org/10.1016/0045-7949(80)90160-1
- Piegel, L., & Tiller, W. (1995). The NURBS Book. Springer-Verlag.
- Ramesh, G., & Krishnamoorthy, C. S. (1995). Geometrically non-linear analysis of plates and shallow shells by dynamic relaxation. Comput. Methods Appl. Mech. Engrg., 123, 15-32. https://doi.org/10.1016/0045-7825(94)00761-B
- Razzaque, R. (1973). Program for triangular bending element with derivative smoothing. Int. J. Num. Meth. Engng., 5, 588-589. https://doi.org/10.1002/nme.1620050415
- Reissner, E. (1945). The effect of transverse shear deformation on the bending of elastic plate. ASME, J. Appl. Mech., 12, 69-76.
- Rushton, K. R. (1970). Large deflection of plates with initial curvature. Int. J. Mech. Sci., 12, 1037-1051. https://doi.org/10.1016/0020-7403(70)90031-7
- Sheikh, A.H. & Mukhopadhyay, M. (2000). Geometric nonlinear analysis of stiffened plate by the spline finite strip method. Computers and Structures, 76, 765-785. https://doi.org/10.1016/S0045-7949(99)00191-1
- Singh, A. V., & Elaghabash, Y. (2003). On the finite displacement analysis of quadrangular plates, International Journal of Non-Linear Mechanics, 38, 1149-1162. https://doi.org/10.1016/S0020-7462(02)00060-4
- Stricklin, J. A., Haisler, W. E., Tisdale, P. R., & Gunderson, R. (1969). A rapidly converging triangular plate element. AIAA J., 7, 180-181. https://doi.org/10.2514/3.5068
- Taylor, R. L. (1998). FEAP - A Finite Element Analysis Program. Ver. 7.4.
- Thankam, V. S., Singh, G., Rao, G. V., & Rath, A. K. (2003). Shear flexible element based on coupled displacement eld for large deflection analysis of laminated plates. Computers and Structures, 81, 309-320. https://doi.org/10.1016/S0045-7949(02)00450-9
- Uhm, T. K., & Youn, S. K. (2009). T-spline finite element method for the analysis of shell structures. Int. J. Numer. Meth. Engng., 80, 507-536. https://doi.org/10.1002/nme.2648
- Weil, N. A., & Newmark, N. M. (1956). Large deflections of elliptical plates. J. Appl. Mech., 23, 21-26.
- Zhang, Y. X., & Cheung, Y. K. (2003). Geometric nonlinear analysis of thin plates by a refined nonlinear non-conforming triangular plate element. Thin-Walled Structures, 41, 403-418. https://doi.org/10.1016/S0263-8231(02)00114-3