DOI QR코드

DOI QR Code

Improvement of the Radiation Beam Profile of a Medical Ultrasonic Transducer

의료용 초음파 트랜스듀서의 방사 빔 형상 개선

  • 박연수 (경북대학교 기계공학과) ;
  • 이원석 (알피니언메디칼시스템(주)) ;
  • 노용래 (경북대학교 기계공학과)
  • Received : 2015.05.04
  • Accepted : 2015.06.23
  • Published : 2015.07.31

Abstract

Improvement of the radiation beam profile of a medical ultrasonic transducer has been researched in this paper. In order to improve the beam profile, a new transducer structure has been devised that includes both a shaded electrode and a multi-focus lens. For a linear sound source, the beam profile was investigated through finite element analysis, and then the optimal design of the devised structure was carried out by considering such performances as sidelobe level, focal range and beamwidth simultaneously. In the process, the optimal dimension of the devised structure was derived by using the ratio of the focal range to the minimum beamwidth as a performance index. As a result, the beam profile has been improved to have a lower sidelobe level at -20.2 dB and a consistent narrow beamwidth from 30 mm to 160 mm depth with the minimum beamwidth at 2.04 mm. Further, a prototype transducer was fabricated to have the devised structure, and its performance was measured and compared with the analysis results to confirm the validity of the devised transducer structure.

본 논문에서는 의료용 초음파 트랜스듀서의 방사 빔 형상의 개선에 관하여 연구하였다. 빔 형상의 개선을 위하여 분할전극과 다초점 렌즈를 포함하는 새로운 트랜스듀서 구조를 고안하였다. 먼저 선형 음원에 대해 유한요소 해석을 통해 빔 형상을 분석한 후, 부엽의 크기, 집속구간 및 빔폭 등의 성능들을 동시에 고려하여 고안된 구조의 최적설계를 수행하였다. 이때 집속구간과 최소 빔폭의 비율을 성능지수로 사용하여 고안된 구조의 최적치수를 도출하였다. 그 결과 부엽의 크기가 -20.2 dB로 작고, 최소 빔폭이 2.04 mm이고 깊이 30 mm부터 160 mm까지 좁고 일정한 빔폭을 가지도록 빔 형상이 개선되었다. 나아가, 고안된 구조를 가지도록 트랜스듀서 시편을 제작하고 빔 패턴을 측정하여 해석 결과와 비교함으로써, 고안된 트랜스듀서 구조의 타당성을 검증하였다.

Keywords

References

  1. D. G. Wildes and L. S. Smith, "Advanced ultrasound probes for medical imaging," AIP Conf. Proc. 1430, 801-808 (2012).
  2. S. Advani, J. V. Velsor, and J. L. Rose, "Beam divergence calculation of an electromagnetic acoustic transducer for the non-destructive evaluation of plate-like structures," in Proc. IEEE Int. Sens. Appl. Symp., 277-282 (2011).
  3. A. T. Fernandez, K. L. Gammelmark, J. J. Dahl, C. G. Keen, R. C. Gauss, and G. E. Trahey, "Synthetic elevation beamforming and image acquisition capabilities using an $8{\times}128$ 1.75D array," IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 50, 40-57 (2003). https://doi.org/10.1109/TUFFC.2003.1176524
  4. B. D. Lindsey, E. D. Light, H. A. Nichletto, E. R. Bennett, D. T. Laskowitz, and S. W. Smith, "The ultrasound brain helmet: new transducers and volume registration for in vivo simultaneous multi-transducer 3-D transcranial imaging," IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 58, 1189-1202 (2011). https://doi.org/10.1109/TUFFC.2011.1929
  5. L. S. Smith and A. F. Brisken, Ultrasonic transducer shading, US Patent No. 4460841, (1984).
  6. K. Kawabe, Y. Hara, K. Watanabe, and T. Shimura, "An ultrasonic transducer apodized by polarization," in Proc. IEEE Int. Ultrasonics Symp., 809-813 (1990).
  7. J. A. Ketterling, O. Aristizabal, D. H. Turnbull, and F. L. Lizzi, "Design and fabrication of a 40-MHz annular array transducer," IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 52, 672-681 (2005). https://doi.org/10.1109/TUFFC.2005.1428050
  8. E. J. Gottlieb, J. M. Cannata, C. Hu, and K. K. Shung, "Development of a high-frequency (> 50 MHz) copolymer annular-array, ultrasound transducer," IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 53, 1037-1045 (2006). https://doi.org/10.1109/TUFFC.2006.1632693
  9. S. C. Chan, M. Mina, S. S. Udpa, L. Udpa, and W. Lord, "Finite element analysis of multilevel acoustic Fresnel lenses," IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 43, 670-677 (1996). https://doi.org/10.1109/58.503729
  10. T. D. Mast, "Fresnel approximations for acoustic fields of rectangularly symmetric sources," J. Acoust. Soc. Am. 121, 3311-3322 (2007). https://doi.org/10.1121/1.2726252
  11. Y. Sato, K. Mizutani, N. Wakatsuki, and T. Nakamura, "Design for an aspherical acoustic Fresnel lens with phase continuity," Jpn. J. Appl. Phys. 47, 4354-4359 (2008). https://doi.org/10.1143/JJAP.47.4354
  12. D. Kim, K. Ha, M. Kim, and J. Kim, "Fabrication and characteristics of multilevel acoustic fresnel lens for ultrasonic transducer for diagnostic imaging" (in Korean), J. Kor. Sens. Soc. 18, 33-41 (2009).
  13. A. M. Hanafy, Broadband phased array transducer design with frequency controlled two dimension capability and methods for manufacture thereof, US Patent No. 5438998, (1995).
  14. M. S. Seyed-Bolorforosh, M. Greenstein, and H. E. Melton, Elevation aperture control of au ultrasonic transducer, US Patent No. 5396143, (1995).
  15. L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders Fundamentals of Acoustics, Fourth Edition (John Wiley & Sons, New York, 2002), pp. 176-179.
  16. R. E. McKeighen, "Design guidelines for medical ultrasonic arrays," in Proc. SPIE Int. Symp. Medi. Imag. 3341, 2-18 (1998).
  17. R. McKeighen, "Finite element simulation and modeling of 2-D arrays for 3-D ultrasonic imaging," IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 48, 1395-1405 (2001). https://doi.org/10.1109/58.949749
  18. Z. Ugray, L. Lasdon, J. Plummer, F. Glover, J. Kelly, and R. Marti, "Scatter search and local NLP solvers: a multistart framework for global optimization," INFORMS J. Comput. 19, 328-340 (2007). https://doi.org/10.1287/ijoc.1060.0175