DOI QR코드

DOI QR Code

Rotor-Blade Shape Design and Power-Performance Analysis for Horizontal-Axis Tidal Turbine Using CFD

수평축 조류발전용 로터 블레이드 형상설계 및 CFD에 의한 출력성능해석

  • Jung, Ji Hyun (Dept. of Mechanical Engineering, Jeju Nat'l Univ.) ;
  • Kim, Bum Suk (Faculty of Wind Energy Engineering, Graduate School, Jeju Nat'l Univ.)
  • 정지현 (제주대학교 기계공학과) ;
  • 김범석 (제주대학교 대학원 풍력공학부)
  • Received : 2015.01.03
  • Accepted : 2015.06.08
  • Published : 2015.08.01

Abstract

We present a design methodology for horizontal-axis tidal turbine blades based on blade element momentum theory, which has been used for aerodynamic design and power-performance analysis in the wind-energy industry. We design a 2-blade-type 1 MW HATT blade, which consists of a single airfoil (S814), and we present the detailed design parameters in this paper. Tidal turbine blades can experience cavitation problems at the blade-tip region, and this should be seriously considered during the early design stage. We perform computational fluid dynamics (CFD) simulations considering the cavitation model to predict the power performance and to investigate the flow characteristics of the blade. The maximum power coefficient is shown to be about 47 under the condition where TSR = 7, and we observed cavitation on the suction and pressure sides of the blade.

본 연구에서는 풍력발전분야의 블레이드 공력설계 및 성능해석에 적용되고 있는 날개요소운동량이론을 이용한 조류터빈 블레이드 형상설계 방법론을 제시하였으며, S814 단일 에어포일로 구성된 2 블레이드 형식의 1MW급 수평축 블레이드 형상설계 결과를 제시하였다. 조류터빈 블레이드는 해양환경에서 운전되는 특성 상 블레이드 팁 근방에서 캐비테이션 발생으로 인한 문제가 상존하므로, 설계초기단계에서 신중히 고려되어야 한다. 본 연구를 통해 설계된 1MW 조류터빈 블레이드의 유동특성분석 및 출력성능해석을 위해 캐비테이션 모델이 고려된 CFD 해석을 수행하였으며, 블레이드 팁 근방 흡입 면 및 압력 면에서 캐비테이션이 발생하고 있음을 확인하였다. 최대 출력계수는 설계 주속비 7의 조건에서 47%로 나타났다.

Keywords

References

  1. http://www.alstom.com/press-centre/2014/10/alstom-improves-the-performance-of-its-tidal-energy-solutions-with-oceade-18-14mw
  2. EY, 2013, "Rising tide - Global Trends in the Emerging Ocean Market," EYG no. FW0025.
  3. Fraenkel, P. L., 2002, "Power from Marine Currents," Proc. of Instn. Mech. Engrs. Part A: J Power and Energy, Vol. 216, pp. 1-14. https://doi.org/10.1243/09576500260251129
  4. Fraenkel, P., 2010, "Practical Tidal Turbine Design Considerations: a Review of Technical Alternatives and Key Design Decisions Leading to the Development of the SeaGen 1.2MW Tidal Turbine," Proc. of Instn. Mech. Engrs. - Fluid Machinery Group, pp. 1-19.
  5. Bir, G. S., Lawson, M. J. and Li, Y., 2011, "Structural Design of a Horizontal-Axis Tidal Current Turbine Composite Blade," ASME 30th Int. Conf. on Ocean, Offshore, and Arctic Eng., Vol. 5, pp. 797-808.
  6. Clark, J. A., 2006, "Design and Testing of a Contra-rotating Tidal Current Turbine," Proc. of IMech. Part: J. Power and Energy, Vol. 221, pp. 171-179.
  7. Faudot, C. and Dahlhaug, Ole G., 2011, "Tidal Turbine Blade: Design and Dynamic Loads Estimation Using CFD and Blade Element Momentum Theory," ASME 30th Int. Conf. on Ocean, Offshore, and Arctic Eng., Vol. 5, pp. 599-608.
  8. Hansen, M. O. L, 2008, Aerodynamics of Wind Turbines, earthscan, London, pp. 27-57
  9. Ahmed, M. R., 2012, "Blade Sections for Wind Turbine and Tidal Currrent Turbine Applications- currernt Status and Future Challenges," Int. J. Energy Res., Vol. 36, pp. 829-844. https://doi.org/10.1002/er.2912
  10. Bak, C., Fuglsang, P., Johansen, J. and Antoniou, I., 2000, "Wind Tunnel Tests of the NACA 63-415 and a Modified NACA 63-415 Airfoil," Riso-R-1193(EN), pp. 1-108.
  11. Janiszewska, J. M., Ramsay, R. R., Hoffmann, M. J. and Gregorek, G. M., 1999, "Effects of Grit Roughness and Pitch Oscillations on the S814 Airfoil," NREL/TP-442-8161.
  12. Menter, F. R., Langtry, R. B., Likki, S. R., Suzenx, Y. B., Huang, P. G. and VOLKER, S., 2006, "A Correlation-Based Transition Model Using Local Variables Part I Model formulation," ASME Journal of Turbomachinery, 128:413-422, pp. 413-422. https://doi.org/10.1115/1.2184352
  13. Bahaj, A. S., Molland, A. F., Chaplin, J. R. and Batten, W. M. J., 2007, "Power and Thrust Measurements of Marine Current Turbines under Various Hydro Dynamic Flow Conditions in a Cavitation Tunnel and a Towing Tank," Renewable Energy, Vol. 32, No. 3, pp. 407-426. https://doi.org/10.1016/j.renene.2006.01.012
  14. Burton, T., Jenkins, N., Sharpe, D. and Bossanyi, E., 2011, Wind Energy HandBook 2nd Edition, pp. 42-43.