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Abstract
It is important not to overcalculate sample sizes for clinical trials due to economic, ethical, and scientific

reasons. Kang and Kim (2014) investigated the accuracy of a well-known sample size calculation formula based
on the approximate power for continuous endpoints in equivalence trials, which has been widely used for De-
velopment of Biosimilar Products. They concluded that this formula is overly conservative and that sample size
should be calculated based on an exact power. This paper extends these results to binary endpoints for three
popular metrics: the risk difference, the log of the relative risk, and the log of the odds ratio. We conclude that
the sample size formulae based on the approximate power for binary endpoints in equivalence trials are overly
conservative. In many cases, sample sizes to achieve 80% power based on approximate powers have 90% exact
power. We propose that sample size should be computed numerically based on the exact power.

Keywords: equivalence trial, power, sample size formula, follow-on biologics

1. Introduction

Many best-selling biological products are set to lose their patents over the next few years; constantly,
the assessment of biological product biosimilarity for regulatory approval has received significant at-
tention (Chow, 2014; Chow and Liu, 2010; Chow et al., 2009; Chow et al., 2013; Hsieh et al., 2013;
Kang and Chow, 2013; Li et al., 2013; US FDA, 2012; World Health Organization, 2009). It is there-
fore necessary to demonstrate similar qualities, efficacy, and safety for biosimilar products and ren-
ovator biological products in order to obtain regulatory approval. Consequently, the characterization
of both products are examined by comparing physicochemical properties, biological activities, impu-
rities, and stability. Immunogenicity tests, preclinical studies, and clinical trials are also conducted to
demonstrate no clinically significant differences in safety and efficacy. A phase III comparative study
(often designed as an equivalence study) is an important step in systematic studies.

The sample size calculation for a phase III clinical trial is important due to economic, ethical, and
scientific considerations (Altman, 1980; Moher et al., 1994). This paper emphasize the drawbacks
of oversized studies that calculate sample size based on approximate powers. An oversized study
results in an unnecessary waste of resources with the potential to expose unnecessarily large number
of subjects to potentially harmful or ineffective treatments (Altman, 1980). Therefore, it is important
to compute the minimal sample size needed to achieve a pre-specified power, such as 80% or 90%.
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Kang and Kim (2014) investigated the accuracy of a well-known sample size calculation formula
for continuous endpoints in equivalence trials. The formula is given as (Chow et al., 2003, p.60)

nT = knR, n2 =
(zα + zβ/2)2σ2

(δ − |µT − µR|)2

(
1 +

1
k

)
(1.1)

to test H0 : |µT − µR| ≥ δ against Ha : |µT − µR| < δ, where zα is the upper α quartile of the
standard normal distribution (for example, z0.05 = 1.645); µT and µR represent the population means
of primary endpoints for a biosimilar product and a renovator biological product, respectively; σ2 is
the population variance of the primary endpoint; k is the allocation ratio; nT and nR are the sample
sizes of a biosimilar product group and the renovator biological product group, respectively. Kang
and Kim (2014) found that the sample size calculation based on (1.1) is very conservative, requiring
unnecessarily large samples.

The primary endpoint is often binary; therefore, it is important to investigate the accuracy of
sample size calculation formulae for binary endpoints in equivalence trials. This paper extends the
results of Kang and Kim (2014) to binary endpoints for three popular metrics: the risk difference, the
log of the relative risk, and the log of the odds ratio.

This paper is organized as follows. Section 2 reviews the hypotheses of equivalence trials for
binary endpoints. Section 3 provides the sample size calculation formulae based on the approximate
and exact powers. Section 4 numerically compares approximate powers with exact powers. Section 5
presents the conclusions.

2. Equivalence Trials for Binary Endpoints

Let XT and XR denote the number of events of interest from the biosimilar product group and the ren-
ovator biological product group, respectively. It is assumed that XT and XR follow binomial distribu-
tions B(nT , pT ) and B(nR, pR), respectively. There are three popular metrics that can be used to assess
the treatment effect estimated from an equivalence trial. The first is the risk difference, RD = pT − pR,
which is the difference between the test and control groups in proportions of outcomes. The second
is the relative risk, or risk ratio (RR = pT /pR), which is the ratio of the rates of unfavorable events in
the test and control groups. The third is the odds ratio, which is the ratio of the odds of success (or
failure) of the test product relative to the control product. The characteristics of these three metrics are
shown in Sinclair and Bracken (1994) and Walter (2000). In this paper, the log of the relative risk and
the log of the odds ratio are investigated instead of the relative risk and the odds ratio, as the former
allow metrics that are normally distributed and easier to evaluate in the analysis.

The hypotheses of equivalence for the three metrics are given as follows. For the risk difference,
it is given as

HD
0 : |pT − pR| ≥ δ vs. HD

a : |pT − pR| < δ, (2.1)

where δ(> 0) is a pre-specified equivalence margin. For the log of the relative risk, it is given as

HR
0 :

∣∣∣∣∣∣log
(

pT

pR

)∣∣∣∣∣∣ ≥ δ vs. HR
a :

∣∣∣∣∣∣log
(

pT

pR

)∣∣∣∣∣∣ < δ. (2.2)

For the log of the odds ratio, it is given as

HO
0 :

∣∣∣∣∣∣log
(

pT /(1 − pT )
pR(1 − pR)

)∣∣∣∣∣∣ ≥ δ vs. HO
a :

∣∣∣∣∣∣log
(

pT /(1 − pT )
pR(1 − pR)

)∣∣∣∣∣∣ < δ. (2.3)



Development of Biosimilar Products 391

The hypotheses in (2.1), (2.2), and (2.3) can be decomposed into two one-sided hypotheses.
Specifically, the hypothesis in (2.1) can be re-expressed into two one-sided hypotheses as:

HD
01 : pT − pR ≤ −δ vs. HD

a1 : pT − pR > −δ

and

HD
02 : pT − pR ≥ δ vs. HD

a2 : pT − pR < δ.

The hypotheses in (2.2) and (2.3) can also be decomposed into two one-sided hypotheses. For the log
of the relative risk, they are given as

HR
01 : log(pT ) − log(pR) ≤ −δ vs. HR

a1 : log(pT ) − log(pR) > −δ

and

HR
02 : log(pT ) − log(pR) ≥ δ vs. HR

a2 : log(pT ) − log(pR) < δ.

For the log of the odds ratio, they are given as

HO
01 : log

(
pT

1 − pT

)
− log

(
pR

1 − pR

)
≤ −δ vs. HO

a1 : log
(

pT

1 − pT

)
− log

(
pR

1 − pR

)
> −δ

and

HO
02 : log

(
pT

1 − pT

)
− log

(
pR

1 − pR

)
≥ δ vs. HO

a2 : log
(

pT

1 − pT

)
− log

(
pR

1 − pR

)
< δ.

If two null hypotheses (HD
01 and HD

02 for the risk difference, HR
01 and HR

02 for the log of the relative
risk, HO

01 and HO
02 for the log of the odds ratio) in two one-sided hypotheses for each metric are rejected

at the significance level α, it can be concluded that the original null hypothesis for each metric (HD
0

for the risk difference, HR
0 for the log of the relative risk, HO

0 for the log of the odds ratio) can be
rejected at significance level α. The biosimilar product and the renovator biological product in each
case are claimed to be biosimilar.

3. Sample Size Calculation Based on the Approximate and Exact Powers

Section 2 introduces two one-sided hypotheses for the risk difference, the log of the relative risk, and
the log of the odds ratio. Test statistics for each hypothesis can be constructed using the central limit
theorem, Slutsky’s theorem, and the delta method. For the risk difference, the test statistics are given
by

ZD
L =

p̂T − p̂R − δ√
p̂T (1− p̂T )

nT
+

p̂R(1− p̂R)
nR

, ZD
U =

p̂T − p̂R + δ√
p̂T (1−p̂T )

nT
+

p̂R(1− p̂R)
nR

.

For the log of the relative risk, the test statistics are given by

ZR
L =

log (p̂T ) − log (p̂R) − δ√
1−p̂T
nT p̂T
+

1− p̂R
nR p̂R

, ZR
U =

log ( p̂T ) − log ( p̂R) + δ√
1− p̂T
nT p̂T
+

1− p̂R
nR p̂R

.
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For the log of the odds ratio, the test statistics are given by

ZO
L =

log
(

P̂T

1−P̂T

)
− log

(
P̂R

1−P̂R

)
− δ√

1
nT P̂T (1−P̂T ) +

1
nR P̂R(1−P̂R)

, ZO
U =

log
(

P̂T

1−P̂T

)
− log

(
P̂R

1−P̂R

)
+ δ√

1
nT P̂T (1−P̂T ) +

1
nR P̂R(1−P̂R)

.

For the risk difference, both HD
01 and HD

02 are rejected at the significance level α if ZD
L < −zα and

ZD
U > zα. Similar conclusions can be drawn for the log of the relative risk and the log of the odds ratio

using (ZR
L ,Z

R
U) and (ZO

L ,Z
O
U), respectively.

Kang and Kim (2014) showed that, under the alternative hypothesis Ha : |pT − pR| < δ, the power
of the test for the risk difference is given by

P
(
ZD

L < −zα and ZD
U > zα|Ha

)
(3.1)

= P
(
ZD

L < −zα|Ha

)
+ P

(
ZD

U > zα|Ha

)
− P

(
ZD

L < −zα or ZD
U > zα|Ha

)
= P

(
ZD

L < −zα|Ha

)
+ P

(
ZD

U > zα|Ha

)
−

[
1 − P

(
ZD

L ≥ −zα and ZD
U ≤ zα|Ha

)]
≥ P

(
ZD

L < −zα|Ha

)
+ P

(
ZD

U > zα|Ha

)
− 1 (3.2)

= Ψ

 δ − (pT − pR)√
pT (1−pT )

nT
+

pR(1−pR)
nR

− zα

 + Ψ
 δ + (pT − pR)√

pT (1−pT )
nT

+
pR(1−pR)

nR

− zα

 − 1

≥ 2Ψ

 δ − |pT − pR|√
pT (1−pT )

nT
+

pR(1−pR)
nR

− zα

 − 1, (3.3)

where Ψ is the cumulative distribution function of the standard normal distribution. The powers in
(3.1) and (3.3) are exact and approximate powers, respectively. An advantage of the approximate
power is that a closed form of the sample size calculation can be obtained. The sample size needed
to achieve power 1 − β based on the approximate power can be obtained by solving the following
equation.

1 − β = 2Ψ

 δ − |pT − pR|√
pT (1−pT )

nT
+

pR(1−pR)
nR

− zα

 − 1.

Then we have

zβ/2 =
δ − |pT − pR|√

pT (1−pT )
nT

+
pR(1−pR)

nR

− zα.

Therefore, the sample size to achieve power 1−β based on the approximate power to test the hypothesis
in (2.1) is

nT =

(
zα + z β

2

)2
[

pT (1−pT )
k +

pR(1−pR)
1

]
(δ − |pT − pR|)2 , nT = knR, (3.4)



Development of Biosimilar Products 393

Table 1: Risk difference: the exact and approximate powers (α = 0.05)

n1 = n2 δ p1 p2 p1 − p2 Exact Approx
100 0.1 0.052 0.05 0.002 0.8827 0.8677

0.1 0.054 0.05 0.004 0.8734 0.8422
0.1 0.056 0.05 0.006 0.8625 0.8139
0.1 0.058 0.05 0.008 0.8500 0.7827
0.1 0.060 0.05 0.010 0.8358 0.7487

100 0.2 0.120 0.1 0.020 0.9919 0.9847
0.2 0.140 0.1 0.040 0.9672 0.9347
0.2 0.160 0.1 0.060 0.9049 0.8100
0.2 0.180 0.1 0.080 0.7930 0.5861
0.2 0.200 0.1 0.100 0.6388 0.2775

100 0.25 0.220 0.2 0.020 0.9894 0.9812
0.25 0.240 0.2 0.040 0.9736 0.9481
0.25 0.260 0.2 0.060 0.9399 0.8802
0.25 0.280 0.2 0.080 0.8814 0.7629
0.25 0.300 0.2 0.100 0.7942 0.5884

100 0.25 0.320 0.3 0.020 0.9629 0.9389
0.25 0.340 0.3 0.040 0.9355 0.8768
0.25 0.360 0.3 0.060 0.8872 0.7769
0.25 0.380 0.3 0.080 0.8159 0.6329
0.25 0.400 0.3 0.100 0.7226 0.4456

100 0.3 0.430 0.4 0.030 0.9862 0.9744
0.3 0.460 0.4 0.060 0.9630 0.9264
0.3 0.490 0.4 0.090 0.9123 0.8247
0.3 0.520 0.4 0.120 0.8232 0.6464
0.3 0.550 0.4 0.150 0.6927 0.3854

where k is an allocation ratio. The sample size calculation formula in (3.4) can be found in Chow et
al. (2003, p.89). Similarly, the sample size to test the hypothesis in (2.2) is

nT =

(
zα + z β

2

)2
[

1−pT
kpT
+

1−pR
pR

]
(
δ −

∣∣∣log (pT/pR)
∣∣∣)2 , nT = knR (3.5)

and the sample size to test the hypothesis in (2.3) is

nT =

(
zα + z β

2

)2
[

1
kpT (1−pT ) +

1
pR(1−pR)

]
(
δ −

∣∣∣∣log
(

pT /(1−pT )
pR/(1−pR)

)∣∣∣∣)2 , nT = knR. (3.6)

Wang et al. (2002) obtained the sample size calculation formula in (3.6).

4. Comparison of the Exact and Approximate Power

The closed forms of the sample size calculation formulae based on the approximate power in equiva-
lence trials for binary endpoints were derived in Section 3 and given by (3.4), (3.5), and (3.6). How-
ever, the approximate power might be smaller than the exact power because the two inequalities in
(3.2) and (3.3) are used to derive the approximate power. Hence, it is important to compare the exact
power obtained from (3.1) and the approximate power calculated from (3.3). Both the exact and ap-
proximate powers were calculated numerically with R code based on (3.1) and (3.3) as presented in
Tables 1–3 (the R code is available from the authors upon request). In all cases, the exact powers are
always greater than the approximate powers.
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Table 2: Relative risk: the exact and approximate powers (α = 0.05)

n1 = n2 δ p1 p2 p1/p2 Exact Approx
100 0.8 0.32 0.3 1.067 0.9598 0.9340

0.8 0.34 0.3 1.133 0.9450 0.8946
0.8 0.36 0.3 1.200 0.9188 0.8389
0.8 0.38 0.3 1.267 0.8819 0.7642
0.8 0.40 0.3 1.333 0.8344 0.6689

100 0.6 0.42 0.4 1.050 0.9308 0.8910
0.6 0.44 0.4 1.100 0.9114 0.8343
0.6 0.46 0.4 1.150 0.8769 0.7579
0.6 0.48 0.4 1.200 0.8293 0.6598
0.6 0.50 0.4 1.250 0.7697 0.5398

100 0.5 0.52 0.5 1.040 0.9409 0.9066
0.5 0.54 0.5 1.080 0.9236 0.8568
0.5 0.56 0.5 1.120 0.8925 0.7882
0.5 0.58 0.5 1.160 0.8486 0.6983
0.5 0.60 0.5 1.200 0.7926 0.5854

100 0.4 0.62 0.6 1.033 0.9308 0.8907
0.4 0.64 0.6 1.067 0.9109 0.8327
0.4 0.66 0.6 1.100 0.8747 0.7531
0.4 0.68 0.6 1.133 0.8239 0.6488
0.4 0.70 0.6 1.167 0.7593 0.5188

100 0.4 0.72 0.7 1.029 0.9922 0.9864
0.4 0.74 0.7 1.057 0.9877 0.9759
0.4 0.76 0.7 1.086 0.9792 0.9585
0.4 0.78 0.7 1.114 0.9653 0.9307
0.4 0.80 0.7 1.143 0.9441 0.8882

Table 3: Odd ratio: the exact and approximate powers (α = 0.05)

n1 = n2 δ p1 p2
p1/(1−p1)
p2/(1−p2) Exact Approx

100 1.0 0.42 0.4 1.086 0.9218 0.8776
1.0 0.43 0.4 1.132 0.9086 0.8406
1.0 0.44 0.4 1.179 0.8899 0.7956
1.0 0.45 0.4 1.227 0.8657 0.7419
1.0 0.46 0.4 1.278 0.8361 0.6791

100 1.0 0.52 0.5 1.083 0.9310 0.8918
1.0 0.53 0.5 1.128 0.9179 0.8566
1.0 0.54 0.5 1.174 0.8993 0.8128
1.0 0.55 0.5 1.222 0.8750 0.7596
1.0 0.56 0.5 1.273 0.8449 0.6962

100 1.0 0.62 0.6 1.088 0.9167 0.8698
1.0 0.63 0.6 1.135 0.8999 0.8255
1.0 0.64 0.6 1.185 0.8762 0.7703
1.0 0.65 0.6 1.238 0.8453 0.7029
1.0 0.66 0.6 1.294 0.8071 0.6225

100 1.2 0.73 0.7 1.159 0.9525 0.9131
1.2 0.74 0.7 1.220 0.9341 0.8735
1.2 0.75 0.7 1.286 0.9083 0.8201
1.2 0.76 0.7 1.357 0.8739 0.7500
1.2 0.77 0.7 1.435 0.8297 0.6608

100 1.4 0.82 0.8 1.139 0.9648 0.9391
1.4 0.83 0.8 1.221 0.9467 0.8996
1.4 0.84 0.8 1.313 0.9178 0.8397
1.4 0.85 0.8 1.417 0.8750 0.7526
1.4 0.86 0.8 1.536 0.8152 0.6320
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Figure 1: Comparison of exact and approximate power (risk difference) (p1 = 0.1–0.3, p2 = 0.1, δ = 0.2,
α = 0.05, n1 = n2 = 100).

Figure 2: Comparison of exact and approximate power (relative risk) (p1 = 0.4–0.8, p2 = 0.4, δ = 0.6, α = 0.05,
n1 = n2 = 100).

Figure 3: Comparison of exact and approximate power (odd ratio) (p1 = 0.4–0.7, p2 = 0.4, δ = 1, α = 0.05,
n1 = n2 = 100).

Figure 1 is a graphical representation of the differences between the two powers for the risk dif-
ference when α = 5%, n1 = n2 = 100, and δ = 0.2. As the value of p1 − p2 increases, the differences
between the two curves also increase and means that the accuracy of the approximate power drops
rapidly. When the value of p1 − p2 is greater than 0.12, the approximate power drops below zero,
which is unacceptable because powers should be positive. Figures 2 and 3 show similar patterns of
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Table 4: Risk difference: sample size calculations based on exact and approximate powers (α = 0.05)

δ p1 p2 p1 − p2 Power Exact Approx Power Exact Approx
0.1 0.052 0.05 0.002 80% 84 87 90% 105 110
0.1 0.054 0.05 0.004 85 92 108 116
0.1 0.056 0.05 0.006 88 98 111 123
0.1 0.058 0.05 0.008 90 104 115 131
0.1 0.060 0.05 0.010 93 110 119 139
0.2 0.120 0.1 0.020 80% 44 52 90% 56 66
0.2 0.140 0.1 0.040 54 71 72 89
0.2 0.160 0.1 0.060 72 99 99 124
0.2 0.180 0.1 0.080 103 142 142 179
0.2 0.200 0.1 0.100 155 215 215 271
0.25 0.220 0.2 0.020 80% 47 54 90% 60 68
0.25 0.240 0.2 0.040 52 67 69 85
0.25 0.260 0.2 0.060 62 84 84 106
0.25 0.280 0.2 0.080 78 108 108 136
0.25 0.300 0.2 0.100 102 141 141 178
0.25 0.320 0.3 0.020 80% 61 70 90% 77 88
0.25 0.340 0.3 0.040 66 85 87 107
0.25 0.360 0.3 0.060 77 105 105 133
0.25 0.380 0.3 0.080 96 133 133 167
0.25 0.400 0.3 0.100 124 172 172 217
0.3 0.430 0.4 0.030 80% 48 57 90% 62 73
0.3 0.460 0.4 0.060 55 73 74 92
0.3 0.490 0.4 0.090 69 96 96 121
0.3 0.520 0.4 0.120 94 130 130 164
0.3 0.550 0.4 0.150 134 186 186 235

differences between two powers for the relative risk and the odds ratio.
In order to investigate how many sample size differences are produced by two different powers, the

R code was made to compute sample sizes based on exact and approximate powers. Tables 4–6 display
sample sizes needed to achieve 80% and 90% power using two different powers for risk difference,
the log of the relative risk, and the odds ratio log, respectively. Sample sizes based on approximate
powers are greater than those based on exact powers in all investigated cases. For example, when
the risk difference is used for β = 0.2, δ = 0.2, p1 = 0.2, and p2 = 0.1, the sample size based on
the approximate power is 215, but the sample size based on the exact power is 155. The two powers
produce a difference for 60 patients which may lead to substantial extra costs and ethical concerns.

Kang and Kim (2014) discovered an interesting phenomenon that the sample sizes needed to
achieve 80% approximate power are the same as those needed to achieve 90% exact power for a
continuous endpoint. Similar phenomena are also observed for a binary endpoint. Such phenomena
occur in 34 of 75 cases in Tables 4–6. For example, such an event occurs when δ = 0.2, p1 = 0.18, and
p2 = 0.1 in Table 4 (nT = nR = 142). In Kang and Kim (2014) Theorem 1 for a continuous endpoint
explains why such phenomena occur. A similar theorem can be derived for a binary endpoint as
follows.

Theorem 1. Let nT = nR and

w = zα −
[pT − pR] + δ√

pT (1−pT )
nT

+
pR(1−pR)

nR

, for the risk difference,
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Table 5: Relative risk: sample size calculations based on exact and approximate powers (α = 0.05)

δ p1 p2 p1/p2 Power Exact Approx Power Exact Approx
0.8 0.32 0.3 1.067 80% 62 71 90% 79 90
0.8 0.34 0.3 1.133 64 81 83 102
0.8 0.36 0.3 1.200 69 93 93 117
0.8 0.38 0.3 1.267 78 107 107 136
0.8 0.40 0.3 1.333 91 126 126 159
0.6 0.42 0.4 1.050 80% 71 82 90% 90 103
0.6 0.44 0.4 1.100 73 94 96 118
0.6 0.46 0.4 1.150 80 109 109 137
0.6 0.48 0.4 1.200 92 127 127 161
0.6 0.50 0.4 1.250 109 151 151 191
0.5 0.52 0.5 1.040 80% 68 78 90% 87 99
0.5 0.54 0.5 1.080 70 89 92 112
0.5 0.56 0.5 1.120 76 103 103 130
0.5 0.58 0.5 1.160 87 120 120 151
0.5 0.60 0.5 1.200 103 142 142 179
0.4 0.62 0.6 1.033 80% 71 82 90% 90 103
0.4 0.64 0.6 1.067 74 94 97 119
0.4 0.66 0.6 1.100 81 110 110 138
0.4 0.68 0.6 1.133 94 129 129 163
0.4 0.70 0.6 1.167 113 156 156 197
0.4 0.72 0.7 1.029 80% 45 51 90% 57 64
0.4 0.74 0.7 1.057 46 57 59 72
0.4 0.76 0.7 1.086 48 64 64 80
0.4 0.78 0.7 1.114 53 72 72 91
0.4 0.80 0.7 1.143 60 82 82 104

Table 6: Odd ratio: sample size calculations based on exact and approximate powers (α = 0.05)

δ p1 p2
p1/(1−p1)
p2/(1−p2) Power Exact Approx Power Exact Approx

1.0 0.42 0.4 1.086 80% 73 85 90% 93 107
1.0 0.43 0.4 1.132 75 92 98 117
1.0 0.44 0.4 1.179 79 101 104 128
1.0 0.45 0.4 1.227 84 112 113 141
1.0 0.46 0.4 1.278 91 124 124 156
1.0 0.52 0.5 1.083 80% 71 82 90% 90 103
1.0 0.53 0.5 1.128 73 89 94 113
1.0 0.54 0.5 1.174 77 98 101 124
1.0 0.55 0.5 1.222 82 108 109 137
1.0 0.56 0.5 1.273 89 120 121 152
1.0 0.62 0.6 1.088 80% 75 86 90% 95 109
1.0 0.63 0.6 1.135 78 95 101 121
1.0 0.64 0.6 1.185 82 106 109 134
1.0 0.65 0.6 1.238 89 119 120 150
1.0 0.66 0.6 1.294 99 135 135 170
1.2 0.73 0.7 1.159 80% 63 77 90% 81 97
1.2 0.74 0.7 1.220 67 86 88 108
1.2 0.75 0.7 1.286 72 97 97 122
1.2 0.76 0.7 1.357 81 110 110 139
1.2 0.77 0.7 1.435 92 127 127 161
1.4 0.82 0.8 1.139 80% 59 70 90% 76 88
1.4 0.83 0.8 1.221 64 80 83 101
1.4 0.84 0.8 1.313 70 93 94 117
1.4 0.85 0.8 1.417 81 110 110 138
1.4 0.86 0.8 1.536 96 133 133 168
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Table 7: Further investigation on Theorem 1 (α = 0.05)

Metric δ p1 p2
Sample size with Sample size with w80% approx power 90% exact power

Risk difference 0.2 0.18 0.10 142 142 9.9519 × 10−8

Risk difference 0.2 0.20 0.10 215 215 4.2490 × 10−13

Risk difference 0.25 0.28 0.20 108 108 2.4720 × 10−5

Risk difference 0.25 0.30 0.20 141 141 1.0651 × 10−7

Relative risk 0.8 0.38 0.30 107 107 9.2356 × 10−5

Relative risk 0.8 0.40 0.30 126 126 2.2052 × 10−6

Relative risk 0.6 0.48 0.40 127 127 6.1416 × 10−5

Relative risk 0.6 0.50 0.40 151 151 1.0050 × 10−6

Odd ratio 1.2 0.76 0.70 110 110 5.0446 × 10−4

Odd ratio 1.2 0.77 0.70 127 127 7.0076 × 10−5

Odd ratio 1.4 0.85 0.80 110 110 5.9863 × 10−4

Odd ratio 1.4 0.86 0.80 133 133 5.1409 × 10−5

w = zα −
[log(pT ) − log(pR)] + δ√

1−pT
nT pT
+

1−pR
nR pR

, for the log of the relative risk,

w = zα −
log

(
PT

1−PT

)
− log

(
PR

1−PR

)
+ δ√

1
nT PT (1−PT ) +

1
nRPR(1−PR)

, for the log of the odds ratio.

When w is so small that Ψ(w) is negligible, the exact power with the sample size to achieve 1 − β
approximate power is actually 1 − β/2.

Proof: The proof of this theorem is the same as Theorem 1 in Kang and Kim (2014). �

Some cases in which the phenomenon described in Theorem 1 occurs were chosen from Tables
4–6, and the values of w were examined (Table 7). All values of w in Table 7 are small and negligible.

5. Conclusion

In this paper, we studied the accuracy of sample size calculation formulae based on the approximate
power for binary endpoints in equivalence trials. The risk difference, the log of the relative risk,
and the log of the odds ratio were investigated. Formulae were very conservative because the two
inequalities derived the closed form of the sample size calculation based on approximate power. In
many practical cases, equivalence trials are planned to achieve 80% power. However, this paper shows
that the sample sizes to achieve 80% approximate power often have 90% exact power. Therefore,
sample size calculation based on the approximate power may produce unnecessary costs and ethical
concerns.

This paper proposes that sample sizes for binary endpoints in equivalence trials should be calcu-
lated based on the exact power. The R code to calculate the sample sizes based on the exact power is
available from the authors upon request.
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