DOI QR코드

DOI QR Code

Artificial gametes from stem cells

  • 투고 : 2015.06.16
  • 심사 : 2015.06.18
  • 발행 : 2015.06.30

초록

The generation of artificial gametes is a real challenge for the scientific community today. In vitro development of human eggs and sperm will pave the way for the understanding of the complex process of human gametogenesis and will provide with human gametes for the study of infertility and the onset of some inherited disorders. However, the great promise of artificial gametes resides in their future application on reproductive treatments for all these people wishing to have genetically related children and for which gamete donation is now their unique option of parenthood. This is the case of infertile patients devoid of suitable gametes, same sex couples, singles and those fertile couples in a high risk of transmitting serious diseases to their progeny. In the search of the best method to obtain artificial gametes, many researchers have successfully obtained human germ cell-like cells from stem cells at different stages of differentiation. In the near future, this field will evolve to new methods providing not only viable but also functional and safe artificial germ cells. These artificial sperm and eggs should be able to recapitulate all the genetic and epigenetic processes needed for the correct gametogenesis, fertilization and embryogenesis leading to the birth of a healthy and fertile newborn.

키워드

참고문헌

  1. Johnson AD, Richardson E, Bachvarova RF, Crother BI. Evolution of the germ line-soma relationship in vertebrate embryos. Reproduction 2011;141:291-300. https://doi.org/10.1530/REP-10-0474
  2. Kashir J, Jones C, Child T, Williams SA, Coward K. Viability assessment for artificial gametes: the need for biomarkers of functional competency. Biol Reprod 2012;87:114. https://doi.org/10.1095/biolreprod.112.103853
  3. Sinha P, Kuruba N. Premature ovarian failure. J Obstet Gynaecol 2007;27:16-9. https://doi.org/10.1080/01443610601016685
  4. Coulam CB, Adamson SC, Annegers JF. Incidence of premature ovarian failure. Obstet Gynecol 1986;67:604-6.
  5. Jarow JP, Espeland MA, Lipshultz LI. Evaluation of the azoospermic patient. J Urol 1989;142:62-5. https://doi.org/10.1016/S0022-5347(17)38662-7
  6. Hwang K, Lamb DJ. New advances on the expansion and storage of human spermatogonial stem cells. Curr Opin Urol 2010; 20:510-4. https://doi.org/10.1097/MOU.0b013e32833f1b71
  7. Levine J, Canada A, Stern CJ. Fertility preservation in adolescents and young adults with cancer. J Clin Oncol 2010;28:4831-41. https://doi.org/10.1200/JCO.2009.22.8312
  8. Silber SJ. Sperm retrieval for azoospermia and intracytoplasmic sperm injection success rates: a personal overview. Hum Fertil (Camb) 2010;13:247-56. https://doi.org/10.3109/14647273.2010.534529
  9. Woodruff TK. The Oncofertility Consortium: addressing fertility in young people with cancer. Nat Rev Clin Oncol 2010;7:466-75. https://doi.org/10.1038/nrclinonc.2010.81
  10. Wyns C, Curaba M, Vanabelle B, Van Langendonckt A, Donnez J. Options for fertility preservation in prepubertal boys. Hum Reprod Update 2010;16:312-28. https://doi.org/10.1093/humupd/dmp054
  11. Jahnukainen K, Ehmcke J, Hou M, Schlatt S. Testicular function and fertility preservation in male cancer patients. Best Pract Res Clin Endocrinol Metab 2011;25:287-302. https://doi.org/10.1016/j.beem.2010.09.007
  12. Wallace WH. Oncofertility and preservation of reproductive capacity in children and young adults. Cancer 2011;117:2301-10. https://doi.org/10.1002/cncr.26045
  13. Irie N, Weinberger L, Tang WW, Kobayashi T, Viukov S, Manor YS, et al. SOX17 is a critical specifier of human primordial germ cell fate. Cell 2015;160:253-68. https://doi.org/10.1016/j.cell.2014.12.013
  14. Sugawa F, Arauzo-Bravo MJ, Yoon J, Kim KP, Aramaki S, Wu G, et al. Human primordial germ cell commitment in vitro associates with a unique PRDM14 expression profile. EMBO J 2015;34: 1009-24. https://doi.org/10.15252/embj.201488049
  15. Dominguez AA, Chiang HR, Sukhwani M, Orwig KE, Reijo Pera RA. Human germ cell formation in xenotransplants of induced pluripotent stem cells carrying X chromosome aneuploidies. Sci Rep 2014;4:6432. https://doi.org/10.1038/srep06432
  16. Aramaki S, Hayashi K, Kurimoto K, Ohta H, Yabuta Y, Iwanari H, et al. A mesodermal factor, T, specifies mouse germ cell fate by directly activating germline determinants. Dev Cell 2013;27:516-29. https://doi.org/10.1016/j.devcel.2013.11.001
  17. Weber S, Eckert D, Nettersheim D, Gillis AJ, Schafer S, Kuckenberg P, et al. Critical function of AP-2 gamma/TCFAP2C in mouse embryonic germ cell maintenance. Biol Reprod 2010;82:214-23. https://doi.org/10.1095/biolreprod.109.078717
  18. Niwa H. How is pluripotency determined and maintained? Development 2007;134:635-46. https://doi.org/10.1242/dev.02787
  19. Aflatoonian B, Moore H. Human primordial germ cells and embryonic germ cells, and their use in cell therapy. Curr Opin Biotechnol 2005;16:530-5. https://doi.org/10.1016/j.copbio.2005.08.008
  20. Perrett RM, Turnpenny L, Eckert JJ, O'Shea M, Sonne SB, Cameron IT, et al. The early human germ cell lineage does not express SOX2 during in vivo development or upon in vitro culture. Biol Reprod 2008;78:852-8. https://doi.org/10.1095/biolreprod.107.066175
  21. Hackett JA, Zylicz JJ, Surani MA. Parallel mechanisms of epigenetic reprogramming in the germline. Trends Genet 2012;28:164-74. https://doi.org/10.1016/j.tig.2012.01.005
  22. Godin I, Wylie C, Heasman J. Genital ridges exert long-range effects on mouse primordial germ cell numbers and direction of migration in culture. Development 1990;108:357-63.
  23. Seisenberger S, Andrews S, Krueger F, Arand J, Walter J, Santos F, et al. The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Mol Cell 2012;48: 849-62. https://doi.org/10.1016/j.molcel.2012.11.001
  24. Lee HJ, Hore TA, Reik W. Reprogramming the methylome: erasing memory and creating diversity. Cell Stem Cell 2014;14:710-9. https://doi.org/10.1016/j.stem.2014.05.008
  25. Martinez-Arroyo AM, Medrano JV, Remohi J, Simon C. Germ line development: lessons learned from pluripotent stem cells. Curr Opin Genet Dev 2014;28:64-70. https://doi.org/10.1016/j.gde.2014.09.011
  26. Aguilar-Gallardo C, Poo M, Gomez E, Galan A, Sanchez E, Marques-Mari A, et al. Derivation, characterization, differentiation, and registration of seven human embryonic stem cell lines (VAL-3,-4,-5,-6M,-7,-8, and-9) on human feeder. In Vitro Cell Dev Biol Anim 2010;46:317-26. https://doi.org/10.1007/s11626-010-9285-3
  27. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006;126:663-76. https://doi.org/10.1016/j.cell.2006.07.024
  28. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007;131:861-72. https://doi.org/10.1016/j.cell.2007.11.019
  29. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007;318:1917-20. https://doi.org/10.1126/science.1151526
  30. Rompolas P, Greco V. Stem cell dynamics in the hair follicle niche. Semin Cell Dev Biol 2014;25-26:34-42. https://doi.org/10.1016/j.semcdb.2013.12.005
  31. Watt FM. Mammalian skin cell biology: at the interface between laboratory and clinic. Science 2014;346:937-40. https://doi.org/10.1126/science.1253734
  32. Wabik A, Jones PH. Switching roles: the functional plasticity of adult tissue stem cells. EMBO J 2015;34:1164-79. https://doi.org/10.15252/embj.201490386
  33. Izadyar F, Wong J, Maki C, Pacchiarotti J, Ramos T, Howerton K, et al. Identification and characterization of repopulating spermatogonial stem cells from the adult human testis. Hum Reprod 2011;26:1296-306. https://doi.org/10.1093/humrep/der026
  34. Kolasa A, Misiakiewicz K, Marchlewicz M, Wiszniewska B. The generation of spermatogonial stem cells and spermatogonia in mammals. Reprod Biol 2012;12:5-23. https://doi.org/10.1016/S1642-431X(12)60074-6
  35. Waheeb R, Hofmann MC. Human spermatogonial stem cells: a possible origin for spermatocytic seminoma. Int J Androl 2011; 34:e296-305. https://doi.org/10.1111/j.1365-2605.2011.01199.x
  36. Phillips BT, Gassei K, Orwig KE. Spermatogonial stem cell regulation and spermatogenesis. Philos Trans R Soc Lond B Biol Sci 2010;365:1663-78. https://doi.org/10.1098/rstb.2010.0026
  37. Hermann BP, Sukhwani M, Hansel MC, Orwig KE. Spermatogonial stem cells in higher primates: are there differences from those in rodents? Reproduction 2010;139:479-93. https://doi.org/10.1530/REP-09-0255
  38. Conrad S, Renninger M, Hennenlotter J, Wiesner T, Just L, Bonin M, et al. Generation of pluripotent stem cells from adult human testis. Nature 2008;456:344-9. https://doi.org/10.1038/nature07404
  39. Kanatsu-Shinohara M, Toyokuni S, Shinohara T. CD9 is a surface marker on mouse and rat male germline stem cells. Biol Reprod 2004;70:70-5. https://doi.org/10.1095/biolreprod.103.020867
  40. Kubota H, Avarbock MR, Brinster RL. Spermatogonial stem cells share some, but not all, phenotypic and functional characteristics with other stem cells. Proc Natl Acad Sci U S A 2003;100: 6487-92. https://doi.org/10.1073/pnas.0631767100
  41. Ryu BY, Orwig KE, Kubota H, Avarbock MR, Brinster RL. Phenotypic and functional characteristics of spermatogonial stem cells in rats. Dev Biol 2004;274:158-70. https://doi.org/10.1016/j.ydbio.2004.07.004
  42. Buaas FW, Kirsh AL, Sharma M, McLean DJ, Morris JL, Griswold MD, et al. Plzf is required in adult male germ cells for stem cell self-renewal. Nat Genet 2004;36:647-52. https://doi.org/10.1038/ng1366
  43. Hofmann MC, Braydich-Stolle L, Dym M. Isolation of male germline stem cells; influence of GDNF. Dev Biol 2005;279:114-24. https://doi.org/10.1016/j.ydbio.2004.12.006
  44. von Schonfeldt V, Wistuba J, Schlatt S. Notch-1, c-kit and GFRalpha-1 are developmentally regulated markers for premeiotic germ cells. Cytogenet Genome Res 2004;105:235-9. https://doi.org/10.1159/000078194
  45. Riboldi M, Rubio C, Pellicer A, Gil-Salom M, Simon C. In vitro production of haploid cells after coculture of CD49f+ with Sertoli cells from testicular sperm extraction in nonobstructive azoospermic patients. Fertil Steril 2012;98:580-90.e4. https://doi.org/10.1016/j.fertnstert.2012.05.039
  46. Kee K, Angeles VT, Flores M, Nguyen HN, Reijo Pera RA. Human DAZL, DAZ and BOULE genes modulate primordial germ-cell and haploid gamete formation. Nature 2009;462:222-5. https://doi.org/10.1038/nature08562
  47. Panula S, Medrano JV, Kee K, Bergstrom R, Nguyen HN, Byers B, et al. Human germ cell differentiation from fetal-and adult-derived induced pluripotent stem cells. Hum Mol Genet 2011;20: 752-62. https://doi.org/10.1093/hmg/ddq520
  48. Medrano JV, Ramathal C, Nguyen HN, Simon C, Reijo Pera RA. Divergent RNA-binding proteins, DAZL and VASA, induce meiotic progression in human germ cells derived in vitro. Stem Cells 2012;30:441-51. https://doi.org/10.1002/stem.1012
  49. Durruthy Durruthy J, Ramathal C, Sukhwani M, Fang F, Cui J, Orwig KE, et al. Fate of induced pluripotent stem cells following transplantation to murine seminiferous tubules. Hum Mol Genet 2014;23:3071-84. https://doi.org/10.1093/hmg/ddu012
  50. Ramathal C, Durruthy-Durruthy J, Sukhwani M, Arakaki JE, Turek PJ, Orwig KE, et al. Fate of iPSCs derived from azoospermic and fertile men following xenotransplantation to murine seminiferous tubules. Cell Rep 2014;7:1284-97. https://doi.org/10.1016/j.celrep.2014.03.067
  51. Aflatoonian B, Ruban L, Jones M, Aflatoonian R, Fazeli A, Moore HD. In vitro post-meiotic germ cell development from human embryonic stem cells. Hum Reprod 2009;24:3150-9. https://doi.org/10.1093/humrep/dep334
  52. Easley CAt, Phillips BT, McGuire MM, Barringer JM, Valli H, Hermann BP, et al. Direct differentiation of human pluripotent stem cells into haploid spermatogenic cells. Cell Rep 2012;2:440-6. https://doi.org/10.1016/j.celrep.2012.07.015
  53. Eguizabal C, Montserrat N, Vassena R, Barragan M, Garreta E, Garcia-Quevedo L, et al. Complete meiosis from human induced pluripotent stem cells. Stem Cells 2011;29:1186-95. https://doi.org/10.1002/stem.672
  54. Tilgner K, Atkinson SP, Golebiewska A, Stojkovic M, Lako M, Armstrong L. Isolation of primordial germ cells from differentiating human embryonic stem cells. Stem Cells 2008;26:3075-85. https://doi.org/10.1634/stemcells.2008-0289
  55. White YA, Woods DC, Takai Y, Ishihara O, Seki H, Tilly JL. Oocyte formation by mitotically active germ cells purified from ovaries of reproductive-age women. Nat Med 2012;18:413-21. https://doi.org/10.1038/nm.2669
  56. Ma Z, Liu R, Wang X, Huang M, Gao Q, Lu Y, et al. Spontaneous germline potential of human hepatic cell line in vitro. Mol Hum Reprod 2013;19:216-26. https://doi.org/10.1093/molehr/gas058
  57. Palermo GD, Takeuchi T, Rosenwaks Z. Technical approaches to correction of oocyte aneuploidy. Hum Reprod 2002;17:2165-73. https://doi.org/10.1093/humrep/17.8.2165
  58. Yang S, Ping P, Ma M, Li P, Tian R, Yang H, et al. Generation of haploid spermatids with fertilization and development capacity from human spermatogonial stem cells of cryptorchid patients. Stem Cell Reports 2014;3:663-75. https://doi.org/10.1016/j.stemcr.2014.08.004
  59. Block E. Quantitative morphological investigations of the follicular system in women; variations at different ages. Acta Anat (Basel) 1952;14:108-23. https://doi.org/10.1159/000140595
  60. Block E. A quantitative morphological investigation of the follicular system in newborn female infants. Acta Anat (Basel) 1953;17:201-6. https://doi.org/10.1159/000140805
  61. Baker TG. A Quantitative and Cytological Study of Germ Cells in Human Ovaries. Proc R Soc Lond B Biol Sci 1963;158:417-33. https://doi.org/10.1098/rspb.1963.0055
  62. Gougeon A, Chainy GB. Morphometric studies of small follicles in ovaries of women at different ages. J Reprod Fertil 1987;81: 433-42. https://doi.org/10.1530/jrf.0.0810433
  63. Richardson SJ, Senikas V, Nelson JF. Follicular depletion during the menopausal transition: evidence for accelerated loss and ultimate exhaustion. J Clin Endocrinol Metab 1987;65:1231-7. https://doi.org/10.1210/jcem-65-6-1231
  64. Hansen KR, Knowlton NS, Thyer AC, Charleston JS, Soules MR, Klein NA. A new model of reproductive aging: the decline in ovarian non-growing follicle number from birth to menopause. Hum Reprod 2008;23:699-708. https://doi.org/10.1093/humrep/dem408
  65. Bendsen E, Byskov AG, Andersen CY, Westergaard LG. Number of germ cells and somatic cells in human fetal ovaries during the first weeks after sex differentiation. Hum Reprod 2006;21:30-5. https://doi.org/10.1093/humrep/dei280
  66. Forabosco A, Sforza C. Establishment of ovarian reserve: a quantitative morphometric study of the developing human ovary. Fertil Steril 2007;88:675-83. https://doi.org/10.1016/j.fertnstert.2006.11.191
  67. Faddy MJ, Gosden RG, Gougeon A, Richardson SJ, Nelson JF. Accelerated disappearance of ovarian follicles in mid-life: implications for forecasting menopause. Hum Reprod 1992;7:1342-6. https://doi.org/10.1093/oxfordjournals.humrep.a137570
  68. Faddy MJ, Gosden RG. A model conforming the decline in follicle numbers to the age of menopause in women. Hum Reprod 1996;11:1484-6. https://doi.org/10.1093/oxfordjournals.humrep.a019422
  69. Zuckerman. The number of oocytes in the mature ovary. Rec Prog Horm Res. 1951;6:63-108.
  70. Zou K, Yuan Z, Yang Z, Luo H, Sun K, Zhou L, et al. Production of offspring from a germline stem cell line derived from neonatal ovaries. Nat Cell Biol 2009;11:631-6. https://doi.org/10.1038/ncb1869
  71. Tilly JL. Apoptosis and ovarian function. Rev Reprod 1996;1:162-72. https://doi.org/10.1530/ror.0.0010162
  72. Oatley J, Hunt PA. Of mice and (wo)men: purified oogonial stem cells from mouse and human ovaries. Biol Reprod 2012;86:196. https://doi.org/10.1095/biolreprod.112.100297
  73. Vogel G. Reproductive biology. Potential egg stem cells reignite debate. Science 2012;335:1029-30. https://doi.org/10.1126/science.335.6072.1029
  74. Ghazal S. Oogonial stem cells: do they exist and may they have an impact on future fertility treatment? Curr Opin Obstet Gynecol 2013;25:223-8. https://doi.org/10.1097/GCO.0b013e328360e96a
  75. Johnson J, Canning J, Kaneko T, Pru JK, Tilly JL. Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature 2004;428:145-50. https://doi.org/10.1038/nature02316
  76. Byskov AG, Faddy MJ, Lemmen JG, Andersen CY. Eggs forever? Differentiation 2005;73:438-46. https://doi.org/10.1111/j.1432-0436.2005.00045.x
  77. Eggan K, Jurga S, Gosden R, Min IM, Wagers AJ. Ovulated oocytes in adult mice derive from non-circulating germ cells. Nature 2006;441:1109-14. https://doi.org/10.1038/nature04929
  78. Begum S, Papaioannou VE, Gosden RG. The oocyte population is not renewed in transplanted or irradiated adult ovaries. Hum Reprod 2008;23:2326-30. https://doi.org/10.1093/humrep/den249
  79. Liu Y, Wu C, Lyu Q, Yang D, Albertini DF, Keefe DL, et al. Germline stem cells and neo-oogenesis in the adult human ovary. Dev Biol 2007;306:112-20. https://doi.org/10.1016/j.ydbio.2007.03.006
  80. Virant-Klun I, Zech N, Rozman P, Vogler A, Cvjeticanin B, Klemenc P, et al. Putative stem cells with an embryonic character isolated from the ovarian surface epithelium of women with no naturally present follicles and oocytes. Differentiation 2008;76:843-56. https://doi.org/10.1111/j.1432-0436.2008.00268.x
  81. Virant-Klun I, Skutella T, Hren M, Gruden K, Cvjeticanin B, Vogler A, et al. Isolation of small SSEA-4-positive putative stem cells from the ovarian surface epithelium of adult human ovaries by two different methods. Biomed Res Int 2013;2013:690415.
  82. Szotek PP, Chang HL, Brennand K, Fujino A, Pieretti-Vanmarcke R, Lo Celso C, et al. Normal ovarian surface epithelial label-retaining cells exhibit stem/progenitor cell characteristics. Proc Natl Acad Sci U S A 2008;105:12469-73. https://doi.org/10.1073/pnas.0805012105
  83. Clark AT, Bodnar MS, Fox M, Rodriquez RT, Abeyta MJ, Firpo MT, et al. Spontaneous differentiation of germ cells from human embryonic stem cells in vitro. Hum Mol Genet 2004;13:727-39. https://doi.org/10.1093/hmg/ddh088
  84. Gkountela S, Li Z, Vincent JJ, Zhang KX, Chen A, Pellegrini M, et al. The ontogeny of cKIT+ human primordial germ cells proves to be a resource for human germ line reprogramming, imprint erasure and in vitro differentiation. Nat Cell Biol 2013;15:113-22. https://doi.org/10.1038/ncb2638
  85. Syrjanen JL, Pellegrini L, Davies OR. A molecular model for the role of SYCP3 in meiotic chromosome organisation. Elife 2014; 3:e02963.
  86. Bowles J, Koopman P. Retinoic acid, meiosis and germ cell fate in mammals. Development 2007;134:3401-11. https://doi.org/10.1242/dev.001107
  87. Sun YC, Cheng SF, Sun R, Zhao Y, Shen W. Reconstitution of gametogenesis in vitro: meiosis is the biggest obstacle. J Genet Genomics 2014;41:87-95. https://doi.org/10.1016/j.jgg.2013.12.008
  88. Gafni O, Weinberger L, Mansour AA, Manor YS, Chomsky E, Ben-Yosef D, et al. Derivation of novel human ground state naive pluripotent stem cells. Nature 2013;504:282-6. https://doi.org/10.1038/nature12745
  89. Hubner K, Fuhrmann G, Christenson LK, Kehler J, Reinbold R, De La Fuente R, et al. Derivation of oocytes from mouse embryonic stem cells. Science 2003;300:1251-6. https://doi.org/10.1126/science.1083452
  90. Novak I, Lightfoot DA, Wang H, Eriksson A, Mahdy E, Hoog C. Mouse embryonic stem cells form follicle-like ovarian structures but do not progress through meiosis. Stem Cells 2006;24:1931-6. https://doi.org/10.1634/stemcells.2005-0520
  91. West FD, Machacek DW, Boyd NL, Pandiyan K, Robbins KR, Stice SL. Enrichment and differentiation of human germ-like cells mediated by feeder cells and basic fibroblast growth factor signaling. Stem Cells 2008;26:2768-76. https://doi.org/10.1634/stemcells.2008-0124
  92. West FD, Roche-Rios MI, Abraham S, Rao RR, Natrajan MS, Bacanamwo M, et al. KIT ligand and bone morphogenetic protein signaling enhances human embryonic stem cell to germ-like cell differentiation. Hum Reprod 2010;25:168-78. https://doi.org/10.1093/humrep/dep338
  93. Richards M, Fong CY, Bongso A. Comparative evaluation of different in vitro systems that stimulate germ cell differentiation in human embryonic stem cells. Fertil Steril 2010;93:986-94. https://doi.org/10.1016/j.fertnstert.2008.10.030
  94. Kerkis A, Fonseca SA, Serafim RC, Lavagnolli TM, Abdelmassih S, Abdelmassih R, et al. In vitro differentiation of male mouse embryonic stem cells into both presumptive sperm cells and oocytes. Cloning Stem Cells 2007;9:535-48. https://doi.org/10.1089/clo.2007.0031
  95. Kono T, Obata Y, Wu Q, Niwa K, Ono Y, Yamamoto Y, et al. Birth of parthenogenetic mice that can develop to adulthood. Nature 2004;428:860-4. https://doi.org/10.1038/nature02402
  96. Publicover S, Harper CV, Barratt C. [Ca2+]i signalling in sperm: making the most of what you've got. Nat Cell Biol 2007;9:235-42. https://doi.org/10.1038/ncb0307-235
  97. Li Q, McKenzie LJ, Matzuk MM. Revisiting oocyte-somatic cell interactions: in search of novel intrafollicular predictors and regulators of oocyte developmental competence. Mol Hum Reprod 2008;14:673-8. https://doi.org/10.1093/molehr/gan064
  98. Niakan KK, Han J, Pedersen RA, Simon C, Pera RA. Human preimplantation embryo development. Development 2012;139: 829-41. https://doi.org/10.1242/dev.060426
  99. Magnusdottir E, Surani MA. How to make a primordial germ cell. Development 2014;141:245-52. https://doi.org/10.1242/dev.098269
  100. Nicholas CR, Haston KM, Grewall AK, Longacre TA, Reijo Pera RA. Transplantation directs oocyte maturation from embryonic stem cells and provides a therapeutic strategy for female infertility. Hum Mol Genet 2009;18:4376-89. https://doi.org/10.1093/hmg/ddp393
  101. Nayernia K, Nolte J, Michelmann HW, Lee JH, Rathsack K, Drusenheimer N, et al. In vitro-differentiated embryonic stem cells give rise to male gametes that can generate offspring mice. Dev Cell 2006;11:125-32. https://doi.org/10.1016/j.devcel.2006.05.010
  102. Hayashi K, Ogushi S, Kurimoto K, Shimamoto S, Ohta H, Saitou M. Offspring from oocytes derived from in vitro primordial germ cell-like cells in mice. Science 2012;338:971-5. https://doi.org/10.1126/science.1226889
  103. Grossniklaus U, Kelly WG, Ferguson-Smith AC, Pembrey M, Lindquist S. Transgenerational epigenetic inheritance: how important is it? Nat Rev Genet 2013;14:228-35. https://doi.org/10.1038/nrg3435
  104. Allegrucci C, Thurston A, Lucas E, Young L. Epigenetics and the germline. Reproduction 2005;129:137-49. https://doi.org/10.1530/rep.1.00360
  105. Messerschmidt DM, Knowles BB, Solter D. DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos. Genes Dev 2014;28:812-28. https://doi.org/10.1101/gad.234294.113
  106. Geijsen N, Horoschak M, Kim K, Gribnau J, Eggan K, Daley GQ. Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature 2004;427:148-54. https://doi.org/10.1038/nature02247
  107. Hajkova P, Erhardt S, Lane N, Haaf T, El-Maarri O, Reik W, et al. Epigenetic reprogramming in mouse primordial germ cells. Mech Dev 2002;117:15-23. https://doi.org/10.1016/S0925-4773(02)00181-8
  108. Manipalviratn S, DeCherney A, Segars J. Imprinting disorders and assisted reproductive technology. Fertil Steril 2009;91:305-15. https://doi.org/10.1016/j.fertnstert.2009.01.002
  109. Hiura H, Okae H, Miyauchi N, Sato F, Sato A, Van De Pette M, et al. Characterization of DNA methylation errors in patients with imprinting disorders conceived by assisted reproduction technologies. Hum Reprod 2012;27:2541-8. https://doi.org/10.1093/humrep/des197
  110. Ben-David U, Benvenisty N. The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat Rev Cancer 2011;11:268-77. https://doi.org/10.1038/nrc3034
  111. Amps K, Andrews PW, Anyfantis G, Armstrong L, Avery S, Baharvand H, et al. Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Nat Biotechnol 2011;29:1132-44. https://doi.org/10.1038/nbt.2051
  112. Zhao T, Zhang ZN, Rong Z, Xu Y. Immunogenicity of induced pluripotent stem cells. Nature 2011;474:212-5. https://doi.org/10.1038/nature10135

피인용 문헌

  1. Induction of Spermatogenesis by Bone Marrow-derived Mesenchymal Stem Cells in Busulfan-induced Azoospermia in Hamster vol.8, pp.2, 2015, https://doi.org/10.15283/ijsc.2015.8.2.134
  2. Gamete activation: basic knowledge and clinical applications vol.22, pp.4, 2016, https://doi.org/10.1093/humupd/dmw014
  3. Endogenous, very small embryonic-like stem cells: critical review, therapeutic potential and a look ahead vol.23, pp.1, 2016, https://doi.org/10.1093/humupd/dmw030
  4. Balancing Ethical Pros and Cons of Stem Cell Derived Gametes vol.45, pp.7, 2015, https://doi.org/10.1007/s10439-017-1793-9
  5. Egg Quality during the Pubertal Transition—Is Youth All It’s Cracked Up to Be? vol.8, pp.None, 2015, https://doi.org/10.3389/fendo.2017.00226
  6. Progress towards human primordial germ cell specification in vitro vol.23, pp.1, 2015, https://doi.org/10.1093/molehr/gaw069
  7. Sex before the State: Civic Sex, Reproductive Innovations, and Gendered Parental Identity vol.26, pp.2, 2017, https://doi.org/10.1017/s0963180116000864
  8. Three-dimensional wet-electrospun poly(lactic acid)/multi-wall carbon nanotubes scaffold induces differentiation of human menstrual blood-derived stem cells into germ-like cells vol.32, pp.3, 2015, https://doi.org/10.1177/0885328217723179
  9. Using stem cell-derived gametes for same-sex reproduction: an alternative scenario vol.43, pp.10, 2017, https://doi.org/10.1136/medethics-2016-103863
  10. Making gametes from alternate sources of stem cells: past, present and future vol.15, pp.None, 2017, https://doi.org/10.1186/s12958-017-0308-8
  11. Spermatogenesis after transplantation of adipose tissue-derived mesenchymal stem cells in busulfan-induced azoospermic hamster vol.21, pp.7, 2015, https://doi.org/10.22038/ijbms.2018.29040.7010
  12. Germ plasm provides clues on meiosis: the concerted action of germ plasm granules and mitochondria in gametogenesis of the clam Ruditapes philippinarum vol.27, pp.1, 2015, https://doi.org/10.1017/s0967199418000588
  13. Novel Approaches in Addressing Ovarian Insufficiency in 2019: Are We There Yet? vol.29, pp.None, 2015, https://doi.org/10.1177/0963689720926154
  14. Germ plasm-related structures in marine medaka gametogenesis; novel sites of Vasa localization and the unique mechanism of germ plasm granule arising vol.28, pp.1, 2015, https://doi.org/10.1017/s0967199419000546
  15. George Lucas : Prophète du transhumanisme ? vol.36, pp.3, 2015, https://doi.org/10.1051/medsci/2020021
  16. Fertility Counseling for Transgender Adolescents: A Review vol.66, pp.6, 2015, https://doi.org/10.1016/j.jadohealth.2020.01.007
  17. Nanocurcumin versus mesenchymal stem cells in ameliorating the deleterious effects in the cadmium‐induced testicular injury: A crosstalk between oxidative and apoptotic markers vol.52, pp.10, 2015, https://doi.org/10.1111/and.13760
  18. Progress and challenges in developing organoids in farm animal species for the study of reproduction and their applications to reproductive biotechnologies vol.52, pp.1, 2021, https://doi.org/10.1186/s13567-020-00891-w