ISSN 1738-8716(Print) ISSN 2287-8130(Online) Particle and Aerosol Research Part. Aerosol Res. Vol. 11, No. 2: June 2015 pp. 57-61 http://dx.doi.org/10.11629/jpaar.2015.11.2.057

Hy-SMPS의 개발 및 성능평가

이홍규·은희람·이건호·안강호* 한양대학교 기계공학과 (2015년 6월 20일 투고, 2015년 7월 2일 수정, 2015년 7월 2일 게재확정)

Development and Evaluation of Hy-SMPS

Hong-Ku Lee • Hee-Ram Eun • Gun-Ho Lee • Kang-Ho Ahn*
Department of Mechanical Engineering, Hanyang University
(Received 20 Jun 2015; Revised 2 July 2015; Accepted 2 July 2015)

Abstract

Atmospheric nano-particles along the altitude is one of the main factors causing severe weather phenomena. It is a challenge to find the precise particle size distribution. One useful instrument includes a scanning mobility particle sizer (SMPS). This measures the size distribution of submicron aerosols. The SMPS consists of a condensation particle counter (CPC), differential mobility analyzer (DMA), high voltage power supplier (HVPS), and neutralizer. Due to the many components, it is difficult to install a commercial SMPS into a tethered balloon package system (Eun, 2011). In this study, we customized a SMPS for the tethered balloon package system called Hy-SMPS. It is portable, compact in structure, and evaluated by TSI SMPS using mono and poly-dispersed particles.

Keywords : CPC, DMA, SMPS, High Voltage Power Supplier, Neutralizer, Size Distribution

^{*} Corresponding author.

Tel: +82-31-417-0601, E-mail: khahn@hanyang.ac.kr

1. 서 론

나노입자는 대기 중에서 일어나는 기상현상을 설 명하는 중요한 요소이다. 때문에 이를 연구하여 기 후 변화 및 대기 현상의 원인을 찾고자하는 연구가 활발히 진행되어 왔다. 특히 대기 중 입자의 고도별 분포를 정확하게 측정하는 것은 매우 중요하다. 입 경별 농도 분포를 측정하는 장비 중 가장 널리 사용 되는 장비는 SMPS (Scanning Mobility Particle Sizer)(Wang and Flagan, 1998)이다. SMPS는 DMA (Differential Mobility Analyzer)(Knutson and Whitby, 1975)와 CPC (Condensation Particle Counter)(Ahn and Liu, 1990 a.b)를 연결하여 수 분 이내로 입경별 농도 분포를 측정할 수 있는 장치이다. DMA에 인가하는 전압을 지수함수에 따라 증가 또는 감소시키면, 입 자는 전기이동도에 따라 순차적으로 배열되고, 배열 된 입자를 CPC를 통해 계수함으로써 입자의 입경별 농도 분포를 측정할 수 있다. SMPS는 높은 정밀도 를 갖는 반면, 분극에 사용되는 DMA, 분극전압을 발생시키는 high voltage power supplier, 중성화를 위 한 neutralizer, 입자를 계수하는 CPC 등을 갖추어야 함으로 그 시스템이 복잡하고 무거워진다. 일반적으 로 널리 사용되는 CPC 인 TSI 3776의 무게는 9.9 kg 로 SMPS로 구성할 경우 그 무게는 20 ~ 30 kg 에 달한다. 따라서 이러한 시스템을 활용하여 고도에 따른 대기 중 입경별 농도 분포를 측정하는 것은 매 우 어려운 일이다.

본 연구에서는 대기입자를 측정하기 위해 고안된

tethered balloon package system (Eun, 2011)에 탑재하 여 고도에 따른 입자의 입경별 농도 분포를 측정할 수 있는 초소형, 초경량화 된 Hy-SMPS의 개발 및 성능 평가를 수행하였다.

2. 실 험

2.1 실험 장비

Hy-SMPS의 component 및 specification은 Table 1. 과 같고, 그 구조는 Fig 1.과 같다. Hy-SMPS는 초경 량, 초소형화된 Hy-DMA, Hy-CPC, Hy-H.V.P.S (Hy-high voltage power supply), soft X-ray, 그리고 이 들의 작동을 제어하는 제어보드 및 작동기들로 구성 된다. 개발된 Hy-SMPS의 총 무게는 1.9 kg 로 매우 가볍고 크기는 250 × 250 × 250 mm 로 매우 작다.

Fig 1. Schematic Diagram of Hy-SMPS.

Component	Specification
DMA	Hy-DMA (Calibrated)
Flowrate	0.125/1.25 lpm (Qsheath / QAerosol)
CPC	Hy-CPC (Calibrated)
Power Supply	Hy-H.V.P.S (Calibrated)
Voltage Range	$0 \sim 10,000 V$
Neutralizer	Soft X-ray
Measurment Range	6.26 ~ 254.83 nm
Weight	1.9 kg
Size	$250 \times 250 \times 250$ mm

2.2 실험방법

설계된 Hy-SMPS는 TSI SMPS를 통하여 성능평가 되었다. Fig 2.는 성능평가에 사용된 실험 개략도 이 다. Atomizer를 통하여 분무된 NaCl 0.1 % 용액은 diffusion dryer를 통과하여 습기 제거 된 뒤, 1st DMA (standard DMA)로 유입되어 분극된다. 분극된 단분산입자를 TSI SMPS와 Hy-SMPS에 동시에 유입 시켜 입자 크기에 따른 두 기기의 concentration resolution과 size resolution을 비교하였다. 이 후 3-way valve를 통하여 atomizer에서 발생된 다분산입 자를 두 기기로 유입시켜 NaCl 0.1 % 용액의 size distribution을 비교 측정하였다. TSI SMPS의 sheath air는 3 lpm, aerosol 유량 및 CPC 유량은 0.3 lpm으 로 설정하였고, 두 장비의 측정입경은 Hy-DMA의 작동 범위를 고려하여 10 nm ~ 143.3 nm 로 동일하 게 설정하였다.

3. 결과 및 고찰

3.1 Size & Concentration Resolution

SMPS의 성능을 평가하기 위하여 입경에 따른 mode size와 total concentration ratio를 측정하였다. 실험에 사용된 단분산입자의 입경은 1st DMA 기준 20 nm, 50 nm, 80 nm, 100 nm, 140 nm 로 대기 중에 많이 분포하는 나노입자영역을 선정하였다. Fig 3.은 1st DMA로부터 분극된 단분산입자들에 대하여 TSI SMPS와 Hy-SMPS의 측정값을 비교한 그림이다. Size resolution을 비교를 위해 단분산 입자에 대한

Fig 2. Experimental Set-up of Hy-SMPS.

두 기기의 mode 값 (Fig 3.(a))을 측정하였으며, concentration resolution을 비교하기 위하여 두 측정 기기의 total concentration ratio (Fig 3.(b))를 계산하였 다. 실험은 총 3회에 걸쳐 반복 수행되었고, 그 결과 를 이용하여 두 기기의 측정값에 대한 error bar를 그렸다. 이 때, 부호는 측정값들의 평균을, error bar 는 측정값들 간의 표준편차를 나타낸다. 1st DMA에 서 만들어진 단분산입자에 대하여 Hy-SMPS와 TSI SMPS의 mode 값은 10 % 이내의 오차율을 보이고 있으며, total concentration ratio 또한 대부분 1 에 가 까운 값을 나타내고 있다. 이로써 두 기기의 측정값 이 매우 유사함을 확인할 수 있다.

3.2 Size Distribution

Fig. 4는 TSI SMPS와 Hy-SMPS를 이용해 입자의 size distribution을 측정한 것이다. 두 기기의 측정값

Fig 3. Mode size and Total concentration ratio (Dp : 20 nm, 50 nm, 80 nm ,100 nm, 140 nm).

을 비교하기 위하여 단분산입자와 다분산입자를 발 생시켜 두 기기에 유입시켰다. Fig. 4 (a), (b) 는 각 각 50 nm 와 100 nm, 단분산입자에 대한 두 기기의 size distribution이며, Fig. 4 (C) 는 NaCl 0.1 % 용액 을 분무하여 발생시킨 다분산입자에 대한 size distribution이다. 두 기기의 inversion matrix 차이로

Fig 4. Size distribution of NaCl 0.1% solution.

값의 total concentration의 차이가 *10 %* 이내로 측정 되었다. 특히, Fig. 4 (C)에서 다분산입자에 대한 size distribution이 매우 유사하게 나타나는 것으로 보아 Hy-SMPS의 측정값이 신뢰할 만한 결과임을 확인할 수 있다.

mode에서의 농도 값이 다소 차이는 있으나 두 측정

4. 결 론

본 연구는 tethered balloon package system에 탑재 하여 고도에 따른 입자의 수 농도 분포를 측정할 수 있는 초소형, 초경량화 된 SMPS의 개발 및 성능평 가를 목적으로 하였다. 기존에 제작되었던 초소형, 초경량화된 Hy-CPC와 Hy-DMA, Hy-H.V.P.S 등을 조합하여 Hy-SMPS를 구성하였다. 개발된 Hy-SMPS 는 크기 250 × 250 × 250 mm, 무게 1.9 kg 으로 상 용제품들에 비해 매우 작고 가벼우며, TSI SMPS와 의 비교를 통하여 그 성능이 기존 상용기기와 동일 함을 확인하였다. 본 연구에서는 상온 상압상태에서 의 성능평가만이 수행되었으나 이 후 고 고도에서 의 작동을 위한 온도와 유량제어 및 저온, 저압에서 의 성능평가가 이루어진다면 Hy-SMPS와 tethered balloon package system을 활용한 대류권내 대기에어 로졸 입경별 분포측정이 가능할 것으로 예상된다.

감사의 글

본 연구는 환경부 "차세대 에코이노베이션기술개 발사업"으로 지원받은 과제임.

References

- Ahn, K.-H., and Liu, B. Y. H. (1990a). Particle Activation and Droplet Growth Process in Condensation Nucleus Counter-I. Theoretical Background, J. Aerosol Sci., 21:249–261.
- Ahn, K.-H., and Liu, B. Y. H. (1990b). Particle Activation and Droplet Growth Processes in

Condensation Nucleus Counter. II. Experimental Study, J. Aerosol Sci., 21:263– 275.

- Eun H.R., H. K. Lee, Y. W. Lee, K.H. Ahn (2011). Development and Tethered Balloon Package System for Vertical Distribution Measurement of Atmospheric Aerosol, Par. Aerosol Res., 9:4, 253-260.
- Knutson, E. and Whitby, K., (1975). Aerosol Classification by Electrical Mobility : Apparatus, Theory and Applications, J. Aerosol Sci., 16, 443-451.
- Wang, S.C. and Flagan, R., (1990). Scanning Electrical mobility spectrometer, Aerosol Sci. and Tech, 13, 230-240.