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OPTIMALITY CONDITIONS FOR OPTIMAL CONTROL

GOVERNED BY BELOUSOV-ZHABOTINSKII

REACTION MODEL

Sang-Uk Ryu

Abstract. This paper is concerned with the optimality conditions for
optimal control problem of Belousov-Zhabotinskii reaction model. That
is, we obtain the optimality conditions by showing the differentiability of
the solution with respect to the control. We also show the uniqueness of
the optimal control.

1. Introduction

Belousov-Zhabotinskii (BZ) reaction model is known as a typical example
of self-organization in the chemical reactions ([5]). In order to investigate the
mechanics of the BZ reaction model which is considered to consist of more
than ten elementary chemical reactions, Keener and Tyson [4] introduced the
following model.

∂y

∂t
= a

∂2y

∂x2
+

1

ǫ2

[
y(1− y)− c(ρ+ u)

(y − q

y + q

)]
in I × (0, T ],

∂ρ

∂t
= b

∂2ρ

∂x2
+

1

ǫ
(y − ρ) in I × (0, T ],(1.1)

∂y

∂x
(0, t) =

∂y

∂x
(L, t) =

∂ρ

∂x
(0, t) =

∂ρ

∂x
(L, t) = 0 on (0, T ],

y(x, 0) = y0(x), ρ(x, 0) = ρ0(x) in I.

Here, I = (0, L) is a bounded interval in R. The variables y(x, t) and ρ(x, t)
describe the concentrations of HBrO2 and Ce4+ at x ∈ I and a time t ∈ [0, T ],
respectively. a > 0 and b > 0 represent the diffusion rate of each species.
Finally, ǫ, q and c are positive constants where 0 < q < 1 and 0 < ǫ ≤ 1. The
control term u(t) denotes a light induced bromide production rate to intensity
of illumination at a time t ∈ [0, T ] ([9], [10], [11], [12]).
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In this paper we are concerned with the optimality conditions for the fol-
lowing optimal control problem:

(P) minimize J (u)

with the cost functional J (u) of the form

J (u) =

∫ T

0

‖y(u)− yd‖
2
H1(I)dt+

∫ T

0

‖ρ(u)− ρd‖
2
H1(I)dt

+ γ‖u‖2H1(0,T ), u ∈ H1(0, T ),

where y = y(u) and ρ = ρ(u) is governed by (1.1).
The optimal control problem for the reaction diffusion model are studied in

many papers. In [2], Garvie and Trenchea studied the optimal control problem
for a nutrient-phytoplankton-zooplankton-fish system. Hoffman and Jiang [3]
considered the optimal control problem of a phase field model for solidification.
In particular, Ryu and Yagi [8] studied the optimal control problem for the
chemotaxis model. Recently, Ryu [7] showed the existence of the global weak
solution and the optimal control for (1.1). In this paper, we obtain the opti-
mality conditions by showing the differentiability of the solution with respect
to the control. We also show the uniqueness of the optimal control.

The paper is organized as follows. Section 2 is a preliminary section. In
Section 3, we obtain the optimality conditions for the prolem (P). Section 4
show the uniqueness of the optimal control under the some assumption.

Notations. Let J be an interval in the real line R. Lp(J ;H), 1 ≤ p ≤ ∞,
denotes the Lp space of measurable functions in J with values in a Hilbert
space H. C(J ;H) denotes the space of continuous functions in J with values
in H. For simplicity, we shall use a universal constant C to denote various
constants which are determined in each occurrence in a specific way by a, b, c,
ǫ, γ, m, l and I. In a case when C depends also on some parameter, say θ, it
will be denoted by Cθ.

2. Preliminaries

We shall state some inequalities on the Sobolev spaces ([1]). When s > 1
2 ,

Hs(I) ⊂ C(Ī) with

‖ · ‖C ≤ Cs‖ · ‖Hs(I).

In particular, H1(I) ⊂ Lq(I) with

‖ · ‖Lq(I) ≤ Cp,q‖ · ‖
r
H1(I)‖ · ‖

1−r
Lp(I),(2.1)

where 1 ≤ p < q ≤ ∞, r =
1
p
− 1

q
1
p
+ 1

2

.

We take the identification of L2(I) and (L2(I))′ and consider that H1(I) ⊂

L2(I) ⊂ (H1(I))′. Then, Lq
′

(I) ⊂ (H1(I))′ for every q′ ∈ [1,∞] with

‖y‖(H1(I))′ ≤ Cq′‖y‖Lq′(I), y ∈ Lq
′

(I).(2.2)



OPTIMALITY CONDITIONS FOR OPTIMAL CONTROL 329

We set three product Hilbert spaces V ⊂ H = H′ ⊂ V ′ as

V = H1(I)×H1(I), H = L2(I)× L2(I), V ′ = (H1(I))′ × (H1(I))′.

We set also a symmetric bilinear form on V × V :

a(Y, Ỹ ) =
(
A

1/2
1 y,A

1/2
1 ỹ

)
L2(I)

+
(
A

1/2
2 y,A

1/2
2 ỹ

)
L2(I)

, Y =

(
y

ρ

)
, Ỹ =

(
ỹ

ρ̃

)
∈ V

satisfying

|a(Y, Ỹ )| ≤M‖Y ‖V‖Ỹ ‖V , Y, Ỹ ∈ V ,

a(Y, Y ) ≥ δ‖Y ‖2V , Y ∈ V

with some δ and M > 0. Here, A1 = −a ∂2

∂x2 + 1 and A2 = −b ∂
2

∂x2 + 1 with the

same domain D(Ai) = H2
n(I) = {z ∈ H2(I); ∂z∂x (0) = ∂z

∂x(L) = 0} (i = 1, 2).

Then this form defines a linear isomorphism A =
(
A1 0
0 A2

)
from V to V ′, and

the part of A in H is a positive definite self-adjoint operator in H.
Then, (1.1) is formulated to the following abstract form

dY

dt
+AY = Fu(Y ), 0 < t ≤ T,(2.3)

Y (0) = Y0

in the space V ′. Here, Fu(·) : V → V ′ is the mapping

Fu(Y ) =

(
y + ǫ−2

[
y(1− y)− c(ρ+ u)

(
y−q
y+q

)]

ǫ−1y + (1− ǫ−1)ρ

)

and Y0 is defined by Y0 =
(
y0
ρ0

)
. Uad = {u ∈ H1(0, T ); ‖u‖H1(0,T ) ≤ m, 0 ≤

u(t) ≤ l} and K =
{(

y0
ρ0

)
∈ H; 0 ≤ y0 ∈ L2(I) and 0 ≤ ρ0 ∈ L2(I)

}
.

Then, we obtain the following result ([7]).

Theorem 2.1. For any Y0 ∈ K and u ∈ Uad, (1.1) has a unique global weak

solution

0 ≤ Y ∈ H1(0, T ;V ′) ∩ C([0, T ];H) ∩ L2(0, T ;V),

equivalently,

0 ≤ y ∈ H1(0, T ; (H1(I))
′
) ∩ C([0, T ];L2(I)) ∩ L2(0, T ;H1(I)),

0 ≤ ρ ∈ H1(0, T ; (H1(I))
′
) ∩ C([0, T ];L2(I)) ∩ L2(0, T ;H1(I)).

Moreover, we also obtain the stability result with respect to the control.

Theorem 2.2. For any Y0 ∈ K, let Y1 =
(
y1
ρ1

)
and Y2 =

(
y2
ρ2

)
be the solutions

with respect to u1, u2 ∈ Uad. Then, we have the following estimate

‖Y1(t)− Y2(t)‖
2
L∞(0,T ;H) ≤ C‖u1(t)− u2(t)‖

2
H1(0,T )(2.4)

for all t ∈ [0, T ].
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Proof. Let ũ = u1 − u2, ỹ = y1 − y2 and ρ̃ = ρ1 − ρ2. Then ỹ and ρ̃ satisfies
the following:

∂ỹ

∂t
+A1ỹ = ỹ + ǫ−2

[
ỹ(1 − ỹ)− c(ρ1 + u1)

( 2qỹ

(y1 + q)(y2 + q)

)

− c(ρ̃+ ũ)
(y2 − q

y2 + q

)]
,

∂ρ̃

∂t
+A2ρ̃ = ǫ−1ỹ + (1− ǫ−1)ρ̃,(2.5)

∂ỹ

∂x
(0, t) =

∂ỹ

∂x
(L, t) =

∂ρ̃

∂x
(0, t) =

∂ρ̃

∂x
(L, t) = 0,

ỹ(x, 0) = 0, ρ̃(x, 0) = 0.

Taking the scalar product with ỹ to the first equation of (2.5), we have

1

2

d

dt
‖ỹ‖2L2(I) +

δ

2
‖ỹ‖2H1(I)(2.6)

≤ Cδ
(
‖ρ1‖

2
H1(I) + ‖y1‖

2
H1(I) + ‖y2‖

2
H1(I) + 1

)

×
(
‖ỹ‖2L2(I) + ‖ρ̃‖2L2(I)

)
+ C|ũ|2

and taking the scalar product with ρ̃ to the second equation of (2.5), we have

1

2

d

dt
‖ρ̃‖2L2(I) +

δ

2
‖ρ̃‖2H1(I) ≤ C

(
‖ỹ‖2L2(I) + ‖ρ̃‖2L2(I)

)
.(2.7)

From (2.6) and (2.7), we obtain

1

2

d

dt
‖Ỹ ‖2H +

δ

2
‖Ỹ ‖2V ≤ C

(
‖Y1‖

2
V + ‖Y2‖

2
V + 1

)
‖Ỹ ‖2H + C|ũ|2.

Using Gronwall’s inequality, we obtain that

‖Ỹ (t)‖2H + δ

∫ t

0

‖Ỹ (t)‖2Vds

≤ C‖ũ‖2L2(0,T )e
∫

T

0
C(‖Y1(s)‖

2
V
+‖Y2(s)‖

2
V
+1)ds ≤ C‖ũ‖2H1(0,T )

for all t ∈ [0, T ]. Hence, we obtain the desired result. �

3. Optimality conditions for the optimal control

For each u ∈ Uad, (2.3) has a unique weak solution Y (u) ∈ H1(0, T ;V ′) ∩
C([0, T ];H) ∩ L2(0, T ;V). Thus, the problem (P) is obviously formulated as
follows:

(P) minimize J (u),

where

J (u) =

∫ T

0

‖Y (u)− Yd‖
2
Vdt+ γ‖u‖2H1(0,T ), u ∈ Uad.

Here, Yd =
(
yd
ρd

)
is a fixed element of L2(0, T ;V) with yd, ρd ∈ L2(0, T ;H1(I)).

γ is a positive constant.
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Theorem 3.1 ([7]). There exists an optimal control ū ∈ Uad for (P) such that

J (ū) = min
u∈Uad

J (u).

To derive the differentiability of Y (u) with respect to the control u, we
note that the mapping Fu(·) : V → V ′ must be Fréchet differentiable with the
derivative

F ′
u(Y )Z =

(
z1 + ǫ−2

[
z1(1 − 2y)− cz2

(
y−q
y+q

)
− c(ρ+ u)

(
2qz1

(y+q)2

)]

ǫ−1z1 + (1 − ǫ−1)z2

)
,

where Y =
(
y
ρ

)
, Z =

(
z1
z2

)
∈ V .

Then, we have the following conditions.

Lemma 3.2. For each η > 0, there exist increasing continuous functions µη, ν :

[0,∞) → [0,∞) such that for Y, Ỹ , Z, P ∈ V,

|〈F ′
u(Y )Z, P 〉V′,V |(f.iii)

≤

{
η‖Z‖V‖P‖V + (‖Y ‖V + 1)µη(‖Y ‖H)‖Z‖H‖P‖V , a.e. (0, T ),
η‖Z‖V‖P‖V + (‖Y ‖V + 1)µη(‖Y ‖H)‖Z‖V‖P‖H, a.e. (0, T ),

‖F ′
u(Ỹ )Z − F ′

u(Y )Z‖V′(f.iv)

≤ ν(‖Ỹ ‖H + ‖Y ‖H)‖Ỹ − Y ‖H‖Z‖V , a.e. (0, T ).

Proof. Indeed, by (2.1), (2.2), it is seen that

‖z1(1− 2y)‖(H1(I))′ ≤ C‖z1(1− 2y)‖L2(I)

≤ C‖z1‖L2(I)(1 + ‖y‖L∞(I))

≤ C‖z1‖L2(I)(1 + ‖y‖H1(I)), y, z1 ∈ H1(I)

and
∥∥∥ρ

( 2qz1
(y + q)2

)∥∥∥
(H1(I))′

≤ C‖ρz1‖L2(I)

≤ C‖ρ‖L∞(I)‖z1‖L2(I)

≤ C‖ρ‖H1(I)‖z1‖L2(I), y, ρ, z1 ∈ H1(I).

Hence, the condition (f.iii) is fulfilled.
On the other hand, for y, ȳ, ρ, ρ̄ ∈ H1(I),

∥∥∥z2
( ỹ − q

ỹ + q
−
y − q

y + q

)∥∥∥
(H1(I))′

=
∥∥∥z2

( 2q(ỹ − y)

(ỹ + q)(y + q)

)∥∥∥
(H1(I))′

≤ C‖z2‖L∞(I)‖ỹ − y‖L2(I)

≤ C‖z2‖H1(I)‖ỹ − y‖L2(I)

and
∥∥∥ρ̃

( 2qz1
(ỹ + q)2

)
− ρ

( 2qz1
(y + q)2

)∥∥∥
(H1(I))′
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≤ C
∥∥∥ρ̃

( 2qz1
(ỹ + q)2

)
− ρ

( 2qz1
(y + q)2

)∥∥∥
L1(I)

≤ C
(
1 + ‖ρ‖L2(I)

)(
‖ỹ − y‖L2(I) + ‖ρ̃− ρ‖L2(I)

)
‖z1‖H1(I),

with the use of (2.1) and (2.2). Hence, the condition (f.iv) is fulfilled. �

Proposition 3.3. The mapping u → Y (u) from Uad into H1(0, T ;V ′) ∩
L2(0, T ;V) is differentiable in the sense

Y (u+ hv)− Y (u)

h
→ Z in H1(0, T ;V ′) ∩ L2(0, T ;V)

as h → 0, where u, v ∈ Uad and u+ hv ∈ Uad. Moreover, Z = Y ′(u)v satisfies

the linear equation

dZ

dt
+AZ − F ′

u(Y (u))Z = Bv(Y (u)), 0 < t ≤ T,(3.1)

Z(0) = 0,

where Bv(Y (u)) =
(−ǫ−2cv

(
y−q

y+q

)
0

)
.

Proof. Let u, v ∈ Uad and 0 ≤ h ≤ 1. Let Yh = Y (uh) =
(
yh
ρh

)
and Y = Y (u) =(

y
ρ

)
be the solutions of (2.3) corresponding to uh = u+ hv and u, respectively.

Step 1. Yh → Y strongly in C([0, T ];H) as h → 0. As in the proof of
Theorem 2.2, we obtain that

‖Yh(t)− Y (t)‖2H ≤ C‖uh(t)− u(t)‖2L2(0,T ) ≤ Ch2‖v(t)‖2H1(0,T )

for all t ∈ [0, T ]. Hence Yh → Y strongly in C([0, T ];H) as h→ 0.

Step 2.
{
Yh−Y
h

}
h>0

is bounded in H1(0, T ;V ′) ∩ L2(0, T ;V). Let Ỹ =

Yh−Y
h =

(
ỹ
ρ̃

)
. We consider

dỸ

dt
+AỸ −

Fuh
(Yh)− Fu(Y )

h
= 0, 0 < t ≤ T,(3.2)

Ỹ (0) = 0.

By (2.2) and yh ≥ 0, we have

∥∥∥Fuh
(Yh)− Fu(Yh)

h

∥∥∥
V′

=
∥∥∥
(
−cv

(
yh−q
yh+q

)

0

)∥∥∥
V′

(3.3)

=
∥∥∥− cv

(yh − q

yh + q

)∥∥∥
(H1(I))′

≤ C|v|

and
∥∥∥Fu(Yh)− Fu(Y )

h

∥∥∥
V′

(3.4)

=
∥∥∥
(
ỹ + ǫ−2

[
ỹ(1− yh − y)− cρ̃

(
yh−q
yh+q

)
− c(ρ+ u)

(
2qỹ

(yh+q)(y+q)

)]

ǫ−1ỹ + (1− ǫ−1)ρ̃

)∥∥∥
V′
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≤ C(‖Yh‖V + ‖Y ‖V + 1)‖Ỹ ‖H.

Taking the scalar product with Ỹ to (3.2) and using (3.3), (3.4), we obtain that

1

2

d

dt
‖Ỹ (t)‖2H +

δ

2
‖Ỹ (t)‖2V ≤ C(‖Yh(t)‖

2
V + ‖Y (t)‖2V + 1)‖Ỹ (t)‖2H + C|v|2.

Using Gronwall’s inequality, we obtain that

‖Ỹ (t)‖2H + δ

∫ t

0

‖Ỹ (t)‖2Vds ≤ C‖v‖2L2(0,T )e
∫

T

0
C(‖Yh(s)‖

2
V
+‖Y (s)‖2

V
+1)ds

for all t ∈ [0, T ]. Hence, Yh−Y
h is bounded in H1(0, T ;V ′) ∩ L2(0, T ;V).

Step 3. Yh−Y
h converges weakly to the solution Z of (3.1) in H1(0, T ;V ′) ∩

L2(0, T ;V) as h → 0. Since the equation (3.1) is linear, we see from Lemma
3.2 that there exists a unique solution Z of (3.1). Also, we see from Step 2 that

Yh − Y

h
→ Z weakly in H1(0, S;V ′) ∩ L2(0, T ;V)

and

Yh − Y

h
→ Z strongly in L2(0, T ;H)(3.5)

as h → 0. Let us verify that Z =
(
z̄1
z̄2

)
is a solution of (3.1). First, we show

that for Ψ =
(
ψ1

ψ2

)
∈ L2(0, T ;V)

∫ T

0

〈
Fu(Yh)− Fu(Y )

h
,Ψ(t)〉V′,Vdt →

∫ T

0

〈F ′
u(Y )Z,Ψ(t)〉V′,Vdt(3.6)

as h→ 0. Indeed, by direct calculation

Fu(Yh)− Fu(Y )

h
− F ′

u(Y )Z

=

(
w̃1 + ǫ−2

[
w̃1(1− yh − y)− cw̃2

(
yh−q
yh+q

)
− c(ρ+ u)

(
2q

(yh+q)(y+q)

)
w̃1

]

ǫ−1w̃1 + (1− ǫ−1)w̃2

)

+

(
ǫ−2

[
(y − yh)z̄1−cz̄2

(
yh−q
yh+q

− y−q
y+q

)
−c(ρ+ u)

(
2q

(yh+q)(y+q)
− 2q

(y+q)2

)
z̄1

]

0

)

= I1 + I2,

where w̃1 = yh−y
h − z̄1 and w̃2 = ρh−ρ

h − z̄2. For ψ1 ∈ L2(0, T ;H1(I)),
∫ T

0

〈(
w̃1(1 − yh − y), ψ1

〉
(H1(I))′,H1(I)

dt

≤ C

∫ T

0

(‖yh‖L2(I) + ‖y‖L2(I) + 1)‖w̃‖L2(I)‖ψ1‖H1(I)dt

≤ C
(
‖yh‖L∞(0,T ;L2(I)) + ‖y‖L∞(0,T ;L2(I)) + 1

)

× ‖w̃‖L2(0,T ;L2(I))‖ψ1‖L2(0,T ;H1(I))
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and
∫ T

0

〈( 2qρ

(yh + q)(y + q)

)
w̃1, ψ1

〉
(H1(I))′,H1(I)

dt

≤ C

∫ T

0

‖ρ‖L2(I)‖w̃‖L2(I)‖ψ1‖H1(I)dt

≤ C‖ρ‖L∞(0,T ;L2(I))‖w̃‖L2(0,T ;L2(I))‖ψ1‖L2(0,T ;H1(I)).

From (3.5), we see that ‖w̃‖L2(0,T ;L2(I)) → 0. Thus, it is seen that I1 → 0

weakly in L2(0, T ;V ′) as h→ 0. Moreover, we have
∫ T

0

〈( 2qρ

(yh + q)(y + q)
−

2qρ

(y + q)2

)
z̄1, ψ1

〉
(H1(I))′,H1(I)

dt

≤ C

∫ T

0

∫ L

0

|ρ(yh − y)z̄1|dx‖ψ1‖H1(I)dt

≤ C

∫ T

0

∫ L

0

|ρ(yh − y)|dx‖z̄1‖L∞(I)‖ψ1‖H1(I)dt

≤ C

∫ T

0

‖ρ‖L2(I)‖yh − y‖L2(I)‖z̄1‖H1(I)‖ψ1‖H1(I)dt

≤ C‖ρ‖L∞(0,T ;L2(I))‖yh − y‖L∞(0,T ;L2(I))‖z̄1‖L2(0,T ;H1(I))‖ψ1‖L2(0,T ;H1(I)).

From Step 1, we see that ‖yh−y‖L∞(0,T ;L2(I)) → 0. Thus, it is seen that I2 → 0

weakly in L2(0, T ;V ′) as h→ 0. Therefore, (3.6) is satisfied.
On the other hand, since

∫ T

0

〈
v
(yh − q

yh + q
−
y − q

y + q

)
, ψ1

〉
(H1(I))′,H1(I)

dt

≤ C‖v‖L2(I)‖yh − y‖L∞(0,T ;L2(I))‖ψ1‖L2(0,T ;H1(I)),

we obtain that
∫ T

0

〈
Fuh

(Yh)− Fu(Yh)

h
,Ψ(t)〉V′,Vdt→

∫ T

0

〈Bv(Y ),Ψ(t)〉V′,Vdt.

By the uniqueness, we see that Z = Z. Hence, Yh−Y
h converges weakly to the

unique solution Z of (3.1) in H1(0, T ;V ′) ∩ L2(0, T ;V) as h→ 0.

Step 4. Yh−Y
h → Z strongly in H1(0, T ;V ′) ∩ L2(0, T ;V) as h → 0. W̃ =

Yh−Y
h − Z satisfies

dW̃

dt
+AW̃ −

(Fu(Yh)− Fu(Y )

h
− F ′

u(Y )Z
)

(3.7)

=
(Fuh

(Yh)− Fu(Yh)

h
−Bv(Y )

)
, 0 < t ≤ T,

W̃ (0) = 0.
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By using (f.iii) and (f.iv), we obtain that
∥∥∥Fu(Yh)− Fu(Y )

h
− F ′

u(Y )Z
∥∥∥
V′

(3.8)

≤ C(‖Yh‖V + ‖Y ‖V + 1)‖W̃‖H

+ ν(‖Yh‖H + ‖Y ‖H)‖Yh − Y ‖H‖Z‖V a.e. (0, T ).

And we have
∥∥∥Fuh

(Yh)− Fu(Yh)

h
−Bv(Y )

∥∥∥
V′

(3.9)

=
∥∥∥− cv

(yh − q

yh + q
−
y − q

y + q

)∥∥∥
(H1(I))′

≤ C|v|‖yh − y‖L2(I) ≤ C‖Yh − Y ‖H a.e. (0, T ).

Taking the scalar product of the equation of (3.7) with W̃ and using (3.8),
(3.9), we have

1

2

d

dt
‖W̃ (t)‖2H +

δ

2
‖W̃ (t)‖2V

≤ C(‖Yh(t)‖
2
V + ‖Y (t)‖2V + 1)‖W̃ (t)‖2H

+ ν(‖Yh‖H + ‖Y ‖H)2(‖Z(t)‖2V + 1)‖Yh(t)− Y (t)‖2H.

From Gronwall’s Lemma,

‖W̃ (t)‖2H + δ

∫ t

0

‖W̃ (s)‖2Vds ≤ C‖Yh(t)− Y (t)‖2L∞(0,T ;H)(‖Z‖
2
L2(0,T ;V) + 1).

Since Yh → Y strongly in L∞(0, T ;H), it follows that Yh−Y
h is strongly conver-

gent to Z in H1(0, T ;V ′) ∩ C([0, T ];H) ∩ L2(0, T ;V). �

Theorem 3.4. Let ū be an optimal control of (P) and let Y =
(
ȳ
ρ̄

)
∈ L2(0, T ;V)

∩ H1(0, T ;V ′) be the optimal state, that is Y is the solution to (2.3) with

the control ū. Then, there exists a unique solution P =
(
p1
p2

)
∈ L2(0, T ;V) ∩

H1(0, T ;V ′) to the linear problem

−
dP

dt
+AP − F ′

ū(Y )
∗
P = Λ(Y − Yd), 0 ≤ t < T,(3.10)

P (T ) = 0

in V ′. Here, Λ : V → V ′ is a canonical isomorphism and

F ′
u(Y )∗P =

(p1 + ǫ−2
[
p1(1− 2ȳ) + ǫp2 − c(ρ̄+ ū)

(
2qp1

(ȳ+q)2

)]

−ǫ−2c
(
ȳ−q
ȳ+q

)
p1 + (1 − ǫ−1)p2

)
.

Moreover, ū satisfies
∫ T

0

〈P,Bv−ū(Y )〉V,V′dt+ γ〈ū, v − ū〉H1(0,T ) ≥ 0 for all v ∈ Uad.
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Proof. Since J is Gâteaux differentiable at ū and Uad is convex, it is seen that

J ′(ū)(v − ū) ≥ 0 for all v ∈ Uad.

By direct calculation, we obtain

J ′(ū)(v − ū) =

∫ T

0

〈Λ(Y − Yd), Z〉V′,Vdt+ γ〈ū, v − ū〉H1(0,T )

with Z = Y ′(ū)(v − ū). Since the equation (3.10) is linear, we deduce from
Lemma 3.2 that there exists a unique solution P of (3.10). Then, we have

∫ T

0

〈Λ(Y − Yd), Z〉V′,Vdt =

∫ T

0

〈P,Bv−ū(Y )〉V,V′dt

by using (3.1) and (3.10). Hence, we obtain
∫ T

0

〈P,Bv−ū(Y )〉V,V′dt+ γ〈ū, v − ū〉H1(0,T ) ≥ 0 for all v ∈ Uad.
�

4. Uniqueness of the optimal control

Suppose there exist two solutions u1, u2 to the optimal control problem (P).

Lemma 4.1. Let P1 and P2 be the corresponding adjoint equation (3.10) to u1
and u2, respectively. Then, we have

(4.1) ‖P1(t)− P2(t)‖
2
L2(0,T ;V) ≤ C‖u1(t)− u2(t)‖

2
H1(0,T ).

Proof. The proof is similar to that of [6, Lemma 4.2]. �

Theorem 4.2. If γ is large enough, then there exists a unique solution to (P).

Proof. By Theorem 3.4, we have
∫ T

0

〈P1, Bu2−u1
(Y1)〉V,V′dt+ γ〈u1, u2 − u1〉H1(0,T ) ≥ 0,(4.2)

∫ T

0

〈P2, Bu1−u2
(Y2)〉V,V′dt+ γ〈u2, u1 − u2〉H1(0,T ) ≥ 0,(4.3)

where P1, Y1 is the solution with respect to u1 and P2, Y2 is the solution with
respect to u2.

By adding (4.2) and (4.3), we have

γ‖u1 − u2‖
2
H1(0,T ) ≤

∫ T

0

〈P1 − P2, Bu2−u1
(Y1)〉V,V′dt

+

∫ T

0

〈P2, Bu1−u2
(Y2)−Bu1−u2

(Y1)〉V,V′dt.

Since

‖Bu2−u1
(Y1)‖V′ =

∥∥∥− c(u2 − u1)
(y1 − q

y1 + q

)∥∥∥
(H1(I))′

≤ C|u1 − u2|
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and

‖Bu1−u2
(Y2)−Bu1−u2

(Y1)‖V′

=
∥∥∥− c(u1 − u2)

(y2 − q

y2 + q
−
y1 − q

y1 + q

)∥∥∥
(H1(I))′

≤ C|u1 − u2|‖y2 − y1‖L2(I) ≤ C|u1 − u2|‖Y2 − Y1‖H,

we have

γ‖u1 − u2‖
2
H1(0,T ) ≤ C

(
‖P1 − P2‖L2(0,T ;V)‖u1 − u2‖L2(0,T )

+ ‖P2‖L2(0,T ;V)‖u1 − u2‖L2(0,T )‖Y1 − Y2‖L∞(0,T ;H).

By using (2.4) and (4.1), we obtain

γ‖u1 − u2‖
2
H1(0,T ) ≤ C‖u1 − u2‖

2
H1(0,T ).

If γ is sufficiently large, we obtain the uniqueness of the optimal control. �
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