DOI QR코드

DOI QR Code

Reduction Leaching of Manganese Dioxide Ore Using Black Locust as Reductant in Sulfuric Acid Solution

  • Xue, Jianrong (College of Chemistry and Chemical Engineering, Central South University) ;
  • Zhong, Hong (College of Chemistry and Chemical Engineering, Central South University) ;
  • Wang, Shuai (College of Chemistry and Chemical Engineering, Central South University) ;
  • Li, Changxin (College of Chemistry and Chemical Engineering, Central South University) ;
  • Li, Jinzhong (College of Chemistry and Chemical Engineering, Central South University) ;
  • Wu, Fangfang (College of Chemistry and Chemical Engineering, Central South University)
  • Received : 2014.10.14
  • Accepted : 2015.02.12
  • Published : 2015.08.01

Abstract

We investigated the reduction leaching process of manganese dioxide ore using black locust as reductant in sulfuric acid solution. The effect of parameters on the leaching efficiency of manganese was the primary focus. Experimental results indicate that manganese leaching efficiency of 97.57% was achieved under the optimal conditions: weight ratio of black locust to manganese dioxide ore (WT) of 4:10, ore particle size of $63{\mu}m$, $1.7mol{\cdot}L^{-1}\;H_2SO_4$, liquid to solid ratio (L/S) of 5:1, leaching time of 8 h, leaching temperature of 368 K and agitation rate of $400r{\cdot}min^{-1}$. The leaching rate of manganese, based on the shrinking core model, was found to be controlled by inner diffusion through the ash/inert layer composed of associated minerals. The activation energy of reductive leaching is $17.81kJ{\cdot}mol^{-1}$. To conclude the reaction mechanism, XRD analysis of leached ore residue indicates manganese compounds disappear; FTIR characterization of leached residue of black locust sawdust shows hemicellulose and cellulose disappear after the leaching process.

Keywords

References

  1. Liu, Y. C., Lin, Q. Q., Li, L. F., Fu, J. G., Zhu, Z. S., Wang, C. Q. and Qian, D., Int. J. Min. Sci. Technol., 24, 567(2014). https://doi.org/10.1016/j.ijmst.2014.05.022
  2. Welham, N. J., Int. J. Miner. Process., 67, 187(2002). https://doi.org/10.1016/S0301-7516(02)00045-5
  3. Abbruzzese, C., Duarte, M. Y., Paponetti, B. and Toro, L., Miner. Eng., 3, 307(1990). https://doi.org/10.1016/0892-6875(90)90126-V
  4. Naik, P. K., Sukla, L. B. and Das, S. C., Hydrometallurgy, 54, 217(2000). https://doi.org/10.1016/S0304-386X(99)00075-4
  5. Kanungo, S. B., Hydrometallurgy, 52, 313(1999). https://doi.org/10.1016/S0304-386X(99)00023-7
  6. Vu, H., Jandova, J., Lisa, K. and Vranka, F., Hydrometallurgy, 77, 147(2005). https://doi.org/10.1016/j.hydromet.2004.09.012
  7. Bafghi, M. S., Zakeri, A., Ghasemi, Z. and Adeli, M., Hydrometallurgy, 90, 207(2008). https://doi.org/10.1016/j.hydromet.2007.07.003
  8. Sahoo, R. N., Naik, P. K. and Das, C., Hydrometallurgy, 62, 157(2001). https://doi.org/10.1016/S0304-386X(01)00196-7
  9. Nayl, A. A., Ismai, I. M. and Aly, H. F., Int. J. Miner. Process., 100, 116(2011). https://doi.org/10.1016/j.minpro.2011.05.003
  10. Tang, Q., Zhong, H., Wang, S., Li, J. Z. and Liu, G. Y., Trans. Nonferrous Met. Soc. China, 24, 861(2014). https://doi.org/10.1016/S1003-6326(14)63136-8
  11. Lasheen, T. A., Ei-Hazek, M. N., Helal, A. S. and Ei-Nagar, W., Int. J. Miner. Process., 92, 109(2009). https://doi.org/10.1016/j.minpro.2009.03.001
  12. Su, H. F., Wen, Y. X., Wang, F., Sun, Y. Y. and Tong, Z. F., Hydrometallurgy, 93, 136(2008). https://doi.org/10.1016/j.hydromet.2008.01.001
  13. Su, H. F., Liu, H. K., Wang, F., Lv, X. Y. and Wen, Y. X., Chin. J. Chem. Eng., 18, 730(2010). https://doi.org/10.1016/S1004-9541(09)60121-X
  14. Cheng, Z., Zhu, G. C. and Zhao, Y. N., Hydrometallurgy, 96, 176(2009). https://doi.org/10.1016/j.hydromet.2008.08.004
  15. Tian, X. K., Wen, X. X., Yang, C., Liang, Y. J., Pi, Z. B. and Wang, Y. X., Hydrometallurgy, 100, 157(2010). https://doi.org/10.1016/j.hydromet.2009.11.008
  16. Yuksek, T., Catena, 90, 18(2012). https://doi.org/10.1016/j.catena.2011.10.001
  17. Tabari, M. and Salehi, A., J. Environ. Sci., 21, 1438(2009). https://doi.org/10.1016/S1001-0742(08)62437-7
  18. Mirko, G., Piero, O., Marco, C. C., Simone, F., Paolo, T., Francesco, C. and Andrea, B., US Patent, 20120104313A1(2012).
  19. Zhou, C., Wang, J. and Wang, N., Korean J. Chem. Eng., 30, 2037(2013). https://doi.org/10.1007/s11814-013-0159-8
  20. Hariprasad, D., Dash, B., Ghosh, M. K. and Anand, S., Miner. Eng., 20, 1293(2007). https://doi.org/10.1016/j.mineng.2007.07.013
  21. Baba, A. A. and Adekola, F. A., J. Saudi Chem. Soc., 16, 377(2012). https://doi.org/10.1016/j.jscs.2011.02.005
  22. Ismail, A. A., Alie, E. A., Ibrahim, I. A. and Ahmed, M. S., Can. J. Chem. Eng., 82, 1296(2004).
  23. Senanayake, G., Hydrometallurgy, 73, 215(2004). https://doi.org/10.1016/j.hydromet.2003.10.010
  24. Park, K. H., Mohapatra, D., Nam, C. W. and Kim, H. I., Korean J. Chem. Eng., 24, 835(2007). https://doi.org/10.1007/s11814-007-0050-6
  25. Tekin, T. and Bayramo lu, M., Hydrometallurgy, 32, 9(1993). https://doi.org/10.1016/0304-386X(93)90053-G
  26. Chimentao, R. J., Lorente, E., Gispert-Guirado, F., Medina, F. and Lopez, F., Carbohydr. Polym., 111, 116(2014). https://doi.org/10.1016/j.carbpol.2014.04.001
  27. Sannigrahi, P., Ragauskas, A. J. and Miller, S. J., Bioenerg. Res., 1, 205(2008). https://doi.org/10.1007/s12155-008-9021-y
  28. Pandey, K. K., J. Appl. Polym. Sci., 71, 1969(1999). https://doi.org/10.1002/(SICI)1097-4628(19990321)71:12<1969::AID-APP6>3.0.CO;2-D
  29. Abidi, N., Cabrales, L. and Haigler, C. H., Carbohydr. Polym., 100, 9(2014). https://doi.org/10.1016/j.carbpol.2013.01.074
  30. Stehfest, K., Toepel, J. and Wilhelm, Plant Physiol. Bioch., 43, 717(2005).
  31. Satyamurthy, P. and Vigneshwaran, N., Enzyme. Microb. Tech., 52, 20(2013). https://doi.org/10.1016/j.enzmictec.2012.09.002
  32. Qian, Y. J., Zuo, C. J., Tan, J. and He, J. H., Energy, 32, 196(2007). https://doi.org/10.1016/j.energy.2006.03.027