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Abstract. Let X be a nonempty set and F(X) be the set of nonempty finite subsets

of X. The paper deals with the extended metrics τ : F(X) → R recently introduced by

Peter Balk. Balk’s metrics and their restriction to the family of sets A with |A| 6 n make

possible to consider ”distance functions” with n variables and related them quantities. In

particular, we study such type generalized diameters diamτn and find conditions under

which B 7→ diamτn B is a Balk’s metric. We prove the necessary and sufficient conditions

under which the restriction τ to the set of A ∈ F(X) with |A| 6 3 is a symmetric G-metric.

An infinitesimal analog for extended by Balk metrics is constructed.

1. Introduction

The following generalized metrics were introduced by P. Balk in 2009 for appli-
cations to some inverse geophysical problems ([2]).

Let X be a nonempty set and F(X) be the set of all nonempty finite subsets of
X.

Definition 1.1.([3]) A function τ : F(X) → R is an extended (by Balk) metric on
X if the equivalence

(1.1) (τ(A) = 0) ⇔ (|A| = 1),
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and the equality

(1.2) τ(A ∪B) 6 τ(A ∪ C) + τ(C ∪B)

hold for all A,B, C ∈ F(X).

Example 1.2.([3]) If ρ is a metric on X, then the function τ(A) = diamρ(A), with
diamρ(A) = sup{ρ(x, y) : x, y ∈ A}, is an extended by Balk metric.

If τ is an extended by Balk metric on X then, as shown in Proposition 2.1, the
function τ2 : X2 → R, with

(1.3) τ2(x, y) = τ(Im(x, y)), Im(x, y) =

{
{x} if x = y

{x, y} if x 6= y,

is a metric on X. Analogously, for all integer numbers k > 1 we can define the
functions τk : Xk → R as

(1.4) τk(x1, . . . , xk) = τ(Im(x1, . . . , xk)),

where Im(x1, . . . , xk) is the image of the set {1, . . . , k} under the map i 7→ xi,

(1.5) (x ∈ Im(x1, . . . , xk)) ⇔ (∃ i ∈ {1, . . . , k} : x = xi).

Formula (1.4) turns to formula (1.3) when k = 2, thus we obtain a ”generalized
metric” which is a function of k variables (while the usual metric is a function of
two variables).

In what follows the important role will play some ”generalized diameters” gen-
erated by τk.

Definition 1.3. Let X 6= ∅, k be an integer positive number and let τ : F(X) → R
be an extended by Balk metric. For every nonempty A ⊆ X we set

diamτk A = sup{τk(x1, . . . , xk) : x1, . . . , xk ∈ A}
that is equivalent to

(1.6) diamτk A = sup{τ(B) : B ⊆ A, |B| 6 k}.

Remark 1.4. It is clear that diamτk A is the usual diameter of A if k = 2.
Definition 1.1 implies diamτ1 A = 0 for every A ∈ F(X).

In Theorem 2.12 of the second section of the paper we obtain a structural
characteristic of extended by Balk metrics τ : F(X) → R for which τ(A) = diamτk A
holds with all A ∈ F(X) and k > 2.

In the third section we study the relationship between τ3 and the so-called
G-metrics which were introduced by Zead Mustafa and Brailey Sims in 2006.

Definition 1.5.([20]) Let X be a nonempty set. A function G : X3 → R is called
a G-metric if the following properties hold.
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(i) G(x, y, z) = 0 for x = y = z.

(ii) 0 < G(x, x, y) for x 6= y.

(iii) G(x, x, y) 6 G(x, y, z) for z 6= y.

(iv) G(x1, x2, x3) = G(xσ1 , xσ2 , xσ3) for every permutation σ of the set {1, 2, 3}
and every (x1, x2, x3) ∈ X3.

(v) G(x, y, z) 6 G(x, a, a) + G(a, y, z) for all a, x, y, z ∈ X.

Definition 1.6. A G-metric is called symmetric if the equality G(x, y, y) =
G(y, x, x) holds for all x, y ∈ X.

Remark 1.7. In [20] G-metrics were defined as some functions G with the codomain
[0,∞), which is slightly different from Definition 1.5. In this connection it should
be pointed out that conditions (i) − (iv) of Definition 1.5 imply the nonnegativity
of G. Indeed, it is sufficient to prove G(y, x, x) > 0 for x 6= y, that follows from
0 < G(x, x, y) = G(x, y, x) = G(y, x, x).

We shall prove that for every symmetric G-metric on X there is an increasing
extended by Balk metric τ : F(X) → R such that τ3 = G. Conversely, an arbitrary
τ3 is a G-metric if the corresponding extended by Balk metric τ : F(X) → R is
increasing. (See Theorem 3.7).

The infinitesimal structure of spaces (X, τ) with extended by Balk metrics τ is
investigated in the fourth section. In particular, we transfer the extended by Balk
metrics τ from X to spaces which are pretangent to (X, τ2). The pretangent spaces
to the general metric spaces were introduced in [12] (see also [13]). For convenience,
we recall some related definitions.

Let (X, d) be a metric space and let p ∈ X. Fix a sequence r̃ of positive
real numbers rn which tend to zero. The sequence r̃ will be called a normalizing
sequence. Let us denote by X̃p the set of all sequences of points from X which tend
to p.

Definition 1.8. Two sequences x̃, ỹ ∈ X̃p, x̃ = (xn)n∈N and ỹ = (yn)n∈N are
mutually stable with respect to a normalizing sequence r̃ = (rn)n∈N, if there is a
finite limit

(1.7) lim
n→∞

d(xn, yn)
rn

:= d̃r̃(x̃, ỹ) = d̃(x̃, ỹ).

The family F̃ ⊆ X̃p is self-stable with respect to r̃, if every two x̃, ỹ ∈ F̃ are
mutually stable, F̃ is maximal self-stable if F̃ is self-stable and for an arbitrary
z̃ ∈ X̃p \ F̃ there is x̃ ∈ F̃ such that x̃ and z̃ are not mutually stable. Zorn’s lemma
leads to the following

Proposition 1.9. Let (X, d) be a metric space and let p ∈ X. Then for every
normalizing sequence r̃ = {rn}n∈N there exists a maximal self-stable family X̃p,r̃

such that p̃ = {p, p, ...} ∈ X̃p,r̃.
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Let us consider a function d̃ : X̃p,r̃ × X̃p,r̃ → R, where d̃(x̃, ỹ) = d̃r̃(x̃, ỹ) is
defined by (1.7). Obviously, d̃ is symmetric and nonnegative. Moreover, the triangle
inequality for d implies

d̃(x̃, ỹ) ≤ d̃(x̃, z̃) + d̃(z̃, ỹ)

for all x̃, ỹ, z̃ ∈ X̃p,r̃. Hence (X̃p,r̃, d̃) is a pseudometric space.
Define a relation ∼ on X̃p,r̃ by x̃ ∼ ỹ if and only if d̃r̃(x̃, ỹ) = 0. Let us denote

by ΩX
p,r̃ the set of equivalence classes in X̃p,r̃ under the equivalence relation ∼. For

α, β ∈ ΩX
p,r̃ set

(1.8) ρ(α, β) = d̃(x̃, ỹ),

where x̃ ∈ α and ỹ ∈ β, then ρ is a metric on ΩX
p,r̃ (see, for example, [16, Ch. 4,

Theorem 15]).

Definition 1.10. The space (ΩX
p,r̃, ρ) is pretangent to the space X at the point p

with respect to a normalizing sequence r̃.
Let τ : F(X) → R be an extended by Balk metric, let p ∈ X and let (ΩX

p,r̃, ρ) be
a pretangent space to the metric space (X, τ2). Now the ”lifting” of τ on (ΩX

p,r̃, ρ) is
defined as follows. Let U be a nontrivial ultrafilter on N. For {α1, . . . , αn} ∈ F(ΩX

p,r̃),
(x1

m)m∈N ∈ α1, . . . , (xn
m)m∈N ∈ αn set

Xτ ({α1, . . . , αn}) = U− lim
τ(Im(x1

m, . . . , xn
m))

rm
.

In Theorem 4.3 it is proved that Xτ is an extended by Balk metric on (ΩX
p,r̃, ρ) and

X2
τ = ρ. Theorem 4.8 provides a characteristic of extended metrics τ : F(X) → R

for which the equality
Xτ (A) = diamρ A

holds for every A ∈ F(ΩX
p,r̃). This result is used in Corollary 4.10 for characterization

of τ for which Xτ are the extended ”ultrametrics”, i.e. satisfy the inequality

Xτ (A ∪B) 6 max{Xτ (A ∪ C), Xτ (B ∪ C)}

instead of inequality (1.2).

2. Extended by Balk Metrics and Generalized Diameters

Let X be a nonempty set and τ : F(X) → R be an extended by Balk metric on
X. Set

(2.1) τ2(x, y) :=

{
τ({x, y}), if x 6= y

0, if x=y
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for every ordered pair (x, y) ∈ X ×X, where {x, y} is the set whose elements are
the points x and y.

Proposition 2.1. The function τ2 : X2 → R is a metric for every nonempty set
X and extended metric τ : F(X) → R.

Proof. Obviously, the function τ2 is symmetric and by (1.1) τ2(x, y) = 0 if and only
if x = y. Putting in (1.2) A = B = C we obtain τ(A) 6 2τ(A) for every A ∈ F(X)
that is an equivalent to τ(A) > 0. The last inequality implies the nonnegativity of
the function τ2. It remains to prove the triangle inequality for τ2. Let x, y, z be
arbitrary points from X. Putting A = {x}, B = {y} and C = {z} into inequality
(1.2) we obtain

τ2(x, y) = τ({x} ∪ {y}) 6 τ({x} ∪ {z}) + τ({z} ∪ {y})
6 τ({x, z}) + τ({z, y}) = τ2(x, z) + τ2(z, y).

Thus the triangle inequality is satisfied. 2

If d is a metric and τ is an extended by Balk metric on the same set X and the
equality d(x, y) = τ2(x, y) holds for all x, y ∈ X, we say that τ is compatible with d.

Remark 2.2. The nonnegativity of τ was earlier proved in [3].

Recall that a mapping f : X → Y from a partially ordered set (X, 6X) to a
partially ordered set (Y, 6Y ) is called increasing if the implication

(x 6X y) ⇒ (f(x) 6Y f(y))

holds for all x, y ∈ X.
Let us put in order the set F(X) by the set-theoretic inclusion ⊆ and consider

R with the standard order 6. If ρ is a metric on X, then the mapping

F(X) 3 A 7→ diamρ(A) ∈ R

is increasing.

Definition 2.3. Let X 6= ∅ and k be an integer number greater or equal two. A
mapping f : F(X) → R is called k-increasing if the implication

(B ⊆ A) ⇒ (f(B) 6 f(A))

holds for A,B ∈ F(X) with |B| 6 k.

Remark 2.4. It is clear that every increasing mapping f : F(X) → R is k-
increasing for every k > 2. It is not hard to check that, if |X| 6 k + 1, then all
k-increasing mappings are increasing.

The next example shows that for |X| > k+2 there are extended by Balk metrics
on X which are k-increasing but not k + 1-increasing mappings.
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Example 2.5. Let |X| > k + 2 and ti, i = 2, . . . , k + 2 be some numbers from
the interval (1, 2) such that tk < tk+2 < tk+1 and ti < ti+1 for i = 2, . . . , k. For
A ∈ F(X) set

(2.2) τ(A) =





0, for |A| = 1
tn, for |A| = n, if 2 6 n 6 k + 1
tk+2, for |A| > k + 2.

It follows directly from (2.2) and the restrictions to the numbers tn that τ is k-
increasing but not k + 1-increasing. If |A ∪ C| 6= 1 6= |B ∪ C| and τ(A ∪ B) = ti,
τ(A ∪ C) = tj , τ(B ∪ C) = tl then ti, tj , tl ∈ (1, 2). Hence ti 6 tj + tl that implies
(1.2). Assuming, for example, the equality 1 = |B ∪ C| we obtain the existence of
x ∈ X such that B = C = {x}. Then inequality (1.2) turns into an equality. Case
|A ∪ C| = 1 is similar.

Lemma 2.6. The following conditions are equivalent for all X 6= ∅, τ : F(X) → R
and integer numbers k > 2.

(i) The mapping τ is a k-increasing function from (F(X),⊆) to (R, 6).

(ii) The inequality

(2.3) τ(A) > max{τ(B) : B ⊆ A, |B| 6 k}

holds for every A ∈ F(X).

The proof can be obtained directly from definitions and we omit it here.

Corollary 2.7. Let X 6= ∅ and k be an integer number greater or equal two. An
extended metric τ : F(X) → R is a k-increasing mapping from (F(X),⊆) to (R, 6)
if and only if the inequality τ(A) > diamτk A holds for every A ∈ F(X) where
diamτk A is defined by relation (1.6).

Let (X, 6X) and (Y, 6Y ) be partially ordered sets. A mapping f : X → Y
is called decreasing if the implication (z 6X y) ⇒ (f(z) >Y f(y)) holds for all
z, y ∈ X.

In the following definition the relation B ⊂ A means that we have B ⊆ A and
B 6= A.

Definition 2.8. Let X 6= ∅ and k > 2 be an integer number. A mapping f :
F(X) → R is k-weakly decreasing if for every A ∈ F(X) with |A| > k there is a
finite nonempty set B ⊂ A such that f(B) > f(A).

Lemma 2.9. The following conditions are equivalent for all X 6= ∅, k > 2 and
mappings τ : F(X) → R.

(i) The mapping τ is k-weakly decreasing.
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(ii) The inequality

(2.4) τ(A) 6 max{τ(B) : B ⊆ A, |B| 6 k}

holds for every A ∈ F(X).

Proof. The implication (ii) ⇒ (i) follows directly from Definition 2.8. Let us check
the implication (i) ⇒ (ii). Assume that condition (i) is true. Let us prove inequality
(2.4) using induction by |A|. If |A| = 1, . . . , k inequality (2.4) is obvious. Suppose
that (2.4) is proved for |A| 6 n, n ∈ N. Assume |A| = n + 1 > k + 1. By
(i) the mapping τ is k-weakly decreasing. Therefore there is B ⊂ A such that
τ(A) 6 τ(B). From the inclusion B ⊂ A follows the inequality |B| 6 n. Using the
induction hypothesis we get

(2.5) τ(A) 6 τ(B) 6 max{τ(C) : C ⊆ B, |C| 6 k}.

Since (C ⊆ B) implies (C ⊆ A), we obtain

max{τ(C) : C ⊆ B, |C| 6 k} 6 max{τ(C) : C ⊆ A, |C| 6 k}.

The last inequality and (2.5) give (2.4). 2

The next corollary directly follows from Definition 1.3 and Lemma 2.9.

Corollary 2.10. Let X 6= ∅ and k > 2 be an integer number. An extended by Balk
metric τ : F(X) → R is a k-weakly decreasing mapping from (F(X),⊆) into (R,6)
if and only if the inequality τ(A) 6 diamτk(A) holds for every A ∈ F(X).

Lemmas 2.6 and 2.9 give the following.

Corollary 2.11. Let X 6= ∅, let k > 2 be an integer number and let τ : F(X) → R
be a k-weakly decreasing mapping. Then τ is increasing if and only if it is k-
increasing.

Proof. It is sufficient to verify that if τ is k-increasing then τ is increasing. Indeed,
if τ is k-increasing, then inequalities (2.3) and (2.4) imply

τ(A) = max{τ(B) : B ⊆ A, |B| 6 k}, A ∈ F(A).

The increase of τ follows. 2

Combining corollaries 2.7, 2.10 and 2.11 we get

Theorem 2.12. The following statements are equivalent for all nonempty X, in-
teger k > 2 and extended metrics τ : F(X) → R.

(i) The equality τ(A) = diamτk A holds for every A ∈ F(X), where diamτk A is
determined by Definition 1.3.

(ii) τ is k-increasing and k-weakly decreasing.
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(iii) τ is increasing and k-weakly decreasing.

Definition 2.13. Let ρ be a metric on X and τ : F(X) → R be an extended by
Balk metric on X. We say that τ is generated by ρ if τ(A) = diamρ A for any
A ∈ F(A).

Theorem 2.14. Let τ : F(X) → R be an extended by Balk metric on a nonempty
set X. The following statements are equivalent.

(i) There is a mapping µ : X2 → R such that F(A) = max{µ(x, y) : x, y ∈ A}
for every A ∈ F(X).

(ii) There is a metric on X which generates τ .

(iii) τ is generated by τ2.

(iv) τ is 2-increasing and 2-weakly decreasing.

(v) τ is increasing and 2-weakly decreasing.

Proof. The implications (iii) ⇒ (ii) and (ii) ⇒ (i) are obvious. The equivalences
(v) ⇔ (iv) and (iv) ⇔ (iii) follow from Theorem 2.12. It remains to note that
(i) ⇔ (v) follows immediately from the definitions of increasing mapping and 2-
weakly decreasing one. 2

In the next section we will prove an analog of Theorem 2.14 for the symmetric
G-metrics.

3. Extended by Balk Metrics and G-metrics

The domain of τ3 (see formula (1.4)) is the set X3 = X × X × X. Different
generalized metrics with this domain were considered at least since 60s of the last
century [14, 15, 6]. The so-called G-metric (see Definition 1.5) is among the most
important from these generalizations. The G-metric was introduced by Mustafa
and Sims [18, 20] and has applications in the fixed point theory.

In the current section we, in particular, show that the functions τ3 : X3 → R
generated by increasing extended by Balk metrics τ : F(X) → R are symmetric (in
the sense of Definition 1.6 G-metrics on X.

Lemma 3.1. Let X 6= ∅ and let τ : F(X) → R be an increasing extended by Balk
metric. Then τ3 is a symmetric G-metric on X.

Proof. By Definition (1.3) τ3 is a symmetric G-metric if and only if the equality
τ3(x, y, y) = τ3(y, x, x) holds for all x, y ∈ X. This equality immediately follows
from (1.4) and (1.5).

Let us check conditions (i)-(v) of Definition 1.5.

(i) For every x the equality τ3(x, x, x) = 0 follows from (1.1).
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(ii) The inequality τ3(x, x, y) > 0 for x 6= y follows from the equality τ3(x, x, y) =
τ2(x, y) and the fact that τ2 is a metric on X (see Proposition 2.1).

(iii) The inequality τ3(x, x, y) 6 τ3(x, y, z) follows because τ is increasing.

(iv) The arguments of the function τ on the right-hand side of equality (1.4)
are sets, that automatically gives the invariance of τ3 with respect to the
permutations of arguments.

(v) We must prove the inequality

(3.1) τ3(x, y, z) 6 τ3(x, a, a) + τ3(a, y, z)

for all x, y, z, a ∈ X. The inequality holds if x = y = z since τ3 is a non-
negative function and τ(x, x, x) = 0. Now let x 6= y 6= z 6= x. Substituting
A = {x}, B = {y, z}, C = {a} in (1.2) we obtain

τ3(x, y, z) = τ(A ∪B) 6 τ(A ∪ C) + τ(B ∪ C) = τ3(x, a, a) + τ3(a, y, z).

If y = z, inequality (3.1) is equivalent to the triangle inequality

τ2(x, y) 6 τ2(x, a) + τ2(a, y),

that was proved in Proposition 2.1. Let x = z. Then (3.1) can be written as

(3.2) τ3(x, x, y) 6 τ3(x, a, a) + τ3(a, y, x).

Since τ is increasing, the inequality τ3(a, y, x) > τ3(a, y, y) holds. Therefore,
it is sufficient to check τ3(x, x, y) 6 τ3(x, a, a)+τ3(a, y, y) which again reduces
to the triangle inequality for τ2. It remains to consider the case where x = y.
With this assumption (3.1) we get

(3.3) τ3(x, x, z) 6 τ3(x, a, a) + τ3(a, x, z).

Again from the increase of τ we obtain τ3(a, x, z) > τ3(a, z, z). Hence it
suffices to prove the inequality τ3(x, x, z) 6 τ3(x, a, a) + τ3(a, z, z), which
also follows from the triangle inequality.

2

Now we want to prove the converse of Lemma 3.1. To do this it suffices for
given symmetric G-metric Φ : X3 → R to construct an increasing extended by Balk
metric τ : F(X) → R such that

(3.4) Φ(x1, x2, x3) = τ(Im(x1, x2, x3)), (x1, x2, x3) ∈ X3,

where Im(x1, x2, x3) was defined by relation (1.5). We will carry out this construc-
tion in two steps.
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• For given G-metric Φ : X3 → R we first find an increasing mapping τ̃ :
F3(X) → R, F3(X) = {A ∈ F(X) : |A| 6 3}, which satisfies (3.4) and
(1.1), (1.2) with τ = τ̃ . (This is almost what we need but the domain of τ̃ is
F3(X)).

• Second, we expand τ̃ to an increasing extended by Balk metric τ : F(X) → R.

Lemma 3.2. Let X 6= ∅. The following statements are equivalent for every func-
tion G : X3 → R.

(i) G satisfies condition (iv) of Definition 1.5 and is symmetric in the sense that

(3.5) G(x, y, y) = G(y, x, x)

for all x, y ∈ X.

(ii) There is a mapping τ̃ : F3(X) → R such that equality (3.4) holds for every
(x1, x2, x3) ∈ X3 with Φ = G and τ = τ̃ .

Proof. The implication (ii) ⇒ (i) has already been proved in the proof of Lemma 3.1.
Let us verify the implication (i) ⇒ (ii). Suppose (i) holds. It is sufficient to

check that the equality

(3.6) Im(x1, x2, x3) = Im(y1, y2, y3)

implies

(3.7) G(x1, x2, x3) = G(y1, y2, y3).

Let (3.6) hold. If |Im(x1, x2, x3)| = 1, then there is x ∈ X such that xi = x = yi for
every i ∈ {1, 2, 3}. In this case (3.7) transforms to the trivial equality G(x, x, x) =
G(x, x, x). If |Im(x1, x2, x3)| = 3, then (3.7) follows from the invariance of G
with respect to the permutations of arguments. For the case |Im(x1, x2, x3)| = 2
there are x, y ∈ X for which the triple (x1, x2, x3) coincides with one of the triples
(x, x, y), (x, y, x), (y, x, x), (y, y, x), (y, x, y), (x, y, y). The same holds for (y1, y2, y3)
also. Now to prove (3.7) we can use (3.5) and the invariance of G with respect to
the permutations of arguments. 2

Remark 3.3. Since the mapping X3 3 (x1, x2, x3) 7→ Im(x1, x2, x3) ∈ F3(X) is
surjective, the existence of τ̃ : F3(X) → R for which the equality

(3.8) G(x1, x2, x3) = τ̃(Im(x1, x2, x3))

holds for every (x1, x2, x3) ∈ X3 implies the uniqueness of τ̃ .

Lemma 3.4. Let X 6= ∅ and let G : X3 → R be a symmetric G-metric. Then
there is an increasing mapping τ̃ : F3(X) → R such that: equality (3.8) holds for
every (x1, x2, x3) ∈ X3; equivalence (1.1) holds with τ̃ = τ for every A ∈ F3(X);
inequality (1.2) holds with τ̃ = τ for all A ∪B,A ∪ C, B ∪ C ∈ F3(X).
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Proof. The existence of τ̃ : F3(X) → R which satisfies (3.8) for (x1, x2, x3) ∈ X3

has already proved in Lemma 3.2. The increase of τ̃ and the equivalence

(τ̃(A) = 0) ⇔ (|A| = 1)

follow from conditions (i)− (iii) of Definition 1.5 and equality (3.8). We must prove
only the inequality

(3.9) τ̃(A ∪B) 6 τ̃(A ∪ C) + τ̃(B ∪ C)

for A ∪B, A ∪ C,B ∪ C ∈ F3(X).
Note that (3.9) is trivial if |A∪B| = 1 because in this case τ̃(A∪B) = 0 holds.

So we can suppose |A ∪ B| = 2 or |A ∪ B| = 3. Since τ̃ is increasing, it suffices to
prove (3.9) for C = {a} where a is an arbitrary point of X.

Let |A ∪B| = 2. If, in addition, we have |A| = 2, then

(3.10) A ∪B = A ⊆ A ∪ C.

Hence using the nonnegativity of G (see Remark 1.7) and the increase of τ̃ we obtain
(3.9). If |B| = 2, then the proof is similar. Now let A = {x}, B = {y} and x 6= y.
Then

(3.11)
τ̃(A ∪B) = G(x, y, y), τ̃(A ∪ C) = G(x, a, a),

τ̃(B ∪ C) = G(y, a, a) = G(a, y, y).

Putting z = y in condition (v) of Definition 1.5 we find

G(x, y, y) 6 G(x, a, a) + G(a, y, y).

This inequality and (3.11) give (3.9).
Suppose |A∪B| = 3. If max(|A|, |B|) = 3, then we have (3.10) or A∪B ⊆ B∪C.

Hence using the increase of τ∗ we get (3.9). If |A| = 2 and |B| = 2, then there
are some distinct x, y, z ∈ X for which A = {x, y} and B = {y, z}. Consequently
τ̃(A ∪B) = G(x, y, z), τ̃(A ∪ C) = G(x, y, a) and τ̃(B ∪ C) = G(y, z, a). Inequality
(3.9) can be rewritten as

(3.12) G(x, y, z) 6 G(x, y, a) + G(y, z, a).

Using condition (iii) of Definition 1.5 and the symmetry of G we obtain the inequal-
ity

(3.13) G(x, a, a) 6 G(x, y, a)

for all x, y, a ∈ X. Now (3.13) and condition (v) of Definition 1.5 imply (3.12). To
complete the proof it remains to consider the next alternative

either |A| = 1 and |B| = 2 or |B| = 1 and |A| = 2.
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By the symmetry of the occurrences of A and B in (3.9) it suffices to consider
the first case. Putting A = {x} and B = {y, z} and expressing τ̃ via G, we get
from (3.9) to the inequality G(x, y, z) 6 G(x, a, a) + G(a, y, z). Condition (v) of
Definition 1.5 claims the validity of the last inequality. 2

In accordance with our plan it remains expand the function τ̃ : F3(X) → R to
an increasing extended by Balk metric τ : F(X) → R. It is easy enough to do for
all increasing τ̃ : Fk(X) → R, Fk(X) = {A ∈ F(X) : |A| 6 k} with an arbitrary
integer k > 2.

For A ∈ F(X) and τ̃ : Fk(X) → R, k > 1 we set

(3.14) diamτ̃ (A) := max{τ̃(B) : B ⊆ A,B ∈ Fk(X)},
c.f. formula (1.6).

Proposition 3.5. Let X 6= ∅, let k > 2 be an integer number and let τ̃ : Fk(X) →
R be an increasing mapping such that the equivalence

(3.15) (τ̃(A) = 0) ⇔ (|A| = 1)

holds for each A ∈ Fk(X) and the inequality

(3.16) τ̃(A ∪B) 6 τ̃(A ∪ C) + τ̃(B ∪ C)

holds as soon as A ∪B,A ∪ C, B ∪ C ∈ Fk(X). Then the function

(3.17) τ : F(X) → R, τ(A) = diamτ̃ (A), A ∈ F(X)

is an increasing extended by Balk metric such that

(3.18) τk(x1, . . . , xk) = τ̃(Im(x1, . . . , xk)) for (x1, . . . , xk) ∈ Xk.

Proof. The increase of τ follows directly from equality (3.14). This equality and
the increase of τ̃ give also equality (3.18). Using (3.14) it is easy to prove (3.15) for
every A ∈ F(X). It remains to show that the inequality

(3.19) τ(A ∪B) 6 τ(A ∪ C) + τ(B ∪ C),

holds for all A,B, C ∈ F(X).
Let A, B and C be arbitrary elements of F(X). Let us choose an element

D ∈ Fk(X) such that

(3.20) D ⊆ A ∪B and τ(A ∪B) = τ̃(D).

If D ⊆ A or D ⊆ B, then by increase of τ we have τ(D) 6 τ(A) 6 τ(A ∪ C) or,
respectively, τ(D) 6 τ(B) 6 τ(B ∪C). These inequalities together with (3.20) give
(3.19). Thus we can assume that

(3.21) D \A 6= ∅ 6= D \B.
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Set A′ := A ∩D, B′ := B ∩D. Then we have

(3.22) D = D ∩ (A ∪B) = A′ ∪B′.

Condition (3.21) and the inequality |A| 6 k give the inequalities

(3.23) |A′| 6 k − 1, and |B′| 6 k − 1.

Using (3.20) and (3.22) we write (3.19) in the form

τ(A′ ∪B′) 6 τ(A ∪ C) + τ(B ∪ C).

Since τ is increasing, A′ ⊆ A and B′ ⊆ B, it suffices to check the inequality

τ(A′ ∪B′) 6 τ(A′ ∪ C) + τ(B′ ∪ C).

Let C ′ = {c} where c ∈ C. Since τ is increasing, we have

τ(A′ ∪ C) + τ(B′ ∪ C) > τ(A′ ∪ C ′) + τ(B′ ∪ C ′).

Therefore it is sufficient to show that

(3.24) τ(A′ ∪B′) 6 τ(A′ ∪ C ′) + τ(B′ ∪ C ′).

To prove (3.24) note that (3.23) implies that

|A′ ∪ C ′| 6 |A′|+ |C ′| 6 (k − 1) + 1 = k,

and, similarly that |B′ ∪ C ′| 6 k. Thus A′ ∪ C ′, B′ ∪ C ′ ∈ Fk(X). In addition we
have A′ ∪ B′ = D ∈ Fk(X). Now using (3.18) we can rewrite (3.24) in the form
τ̃(A′ ∪B′) 6 τ̃(A′ ∪ C ′) + τ̃(B′ ∪ C ′) that holds by (3.16).

Thus the function τ defined on F(X) by formula (3.17) has all properties of
extended by Balk metric. 2

Remark 3.6. Proposition 3.5 is false for k = 1. In this case we have diamτ̃ (A) = 0
for every A ∈ F(X).

Theorem 3.7. Let X 6= ∅. The following statements are equivalent for every
function G : X3 → R.

(i) G is a symmetric G-metric in the sense of Definition 1.5.

(ii) There is an increasing extended by Balk metric τ : F(X) → R such that
τ3 = G.

Proof. The implication (ii) ⇒ (i) was obtained in Lemma 3.1. Let us prove the
implication (i) ⇒ (ii). Suppose (i) holds. By Lemma 3.2 there is τ̃ : F3(X) → R
such that G(x1, x2, x3) = τ̃(Im(x1, x2, x3)) for every (x1, x2, x3) ∈ X3. Using
Lemma 3.4 we get the equivalence (τ̃(A) = 0) ⇔ (|A| = 1) for every A ∈ F3(X)
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and the inequality τ̃(A∪B) 6 τ̃(A∪C)+ τ̃(B∪C) for A∪B, A∪C,B∪C ∈ F3(X).
By Proposition 3.5 there is an increasing extended by Balk metric τ : F(X) → R
such thatτ |F3(X) = τ̃ . The implication (i) ⇒ (ii) is proved. 2

The next theorem is an analog of Theorem 2.14.

Theorem 3.8. Let τ : F(X) → R be an extended by Balk metric on X 6= ∅. The
following statements are equivalent.

(i) There is a function G : X3 → R such that the equality

(3.25) τ(A) = max{G(x, y, z) : x, y, z ∈ A}
holds for every A ∈ F(X).

(ii) There is a symmetric G-metric G : X3 → R such that equality (3.25) holds
for every A ∈ F(X).

(iii) For every A ∈ F(X) the equality (3.25) holds with G = τ3.

(iv) τ is 3-increasing and 3-weakly decreasing.

(v) τ is increasing and 3-weakly decreasing.

Proof. If (iii) holds, then τ is increasing. Then, by Lemma 3.1, τ3 is symmetric
G-metric. Therefore the implication (iii) ⇒ (ii) is true. The implication (ii) ⇒ (i)
is obvious. The implication (i) ⇒ (v) follows directly from definitions. To complete
the proof it remains to note that Theorem 2.12 gives (v) ⇔ (iv) and (iv) ⇔ (iii).2

4. Extended Metrics on Pretangent Spaces

Let (X, d) be a metric space with a metric d. The infinitesimal geometry of
the space X can be investigated by constructing of metric spaces that, in some
sense, are tangent to X. If X is equipped with an additional structure, then the
question arises of the lifting this structure on the tangent spaces. More specifically,
let τ : F(X) → R be an extended by Balk metric and let (Ω, ρ) be a tangent space
to a metric space (X, d). Suppose τ is compatible with d.

How to build an extended by Balk metric which is compatible with the metric ρ?
The answer to this question depends on the construction of the tangent space

(Ω, ρ). Today there are several approaches to construct tangent spaces to metric
spaces. Probably, the most famous of these are the Gromov-Hausdorff convergence
and the ultra-convergence. The sequential approach to the construction of ”pretan-
gent” and ”tangent” spaces was proposed in [12] and developed in [10, 1, 5, 4, 7, 9].

To construct Balk’s extended metrics on pretangent spaces we will use ultrafil-
ters on N. Recall the necessary definitions.

Let X be a nonempty set and let B(X) be the set of all its subsets. A set
U ⊆ B(X) is called a filter on X if ∅ /∈ U 6= ∅ and the implication

(A ∈ U &B ∈ U) ⇒ (A ∩B ∈ U)) and (A ⊇ B &B ∈ U) ⇒ (A ∈ U))
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hold for all A, B ⊆ X.
A filter U on X is called an ultrafilter if the implication (P ⊇ U) ⇒ (U = P)

holds for every filter P on X. An ultrafilter U on X is called trivial if there is a
point x0 ∈ X such that (A ∈ U) ⇔ (x0 ∈ A) for A ∈ B(X). Otherwise U is a
nontrivial ultrafilter. Let U be a filter on X. A mapping Φ : X → R converges to a
point t ∈ R by the filter U, symbolically U− limΦ(x) = t, if

(4.1) {x ∈ X : |Φ(x)− t| < ε} ∈ U

for every ε > 0.

Example 4.1. If M is the Frechet filter on N, (is the family of subsets of N
with finite complements) and (xn)n∈N is a sequence of real numbers, then the limit
lim

n→∞
xn exists if and only if there is M− limxn. In this case lim

n→∞
xn = M− limxn.

We shall use the following properties of the nontrivial ultrafilters U on N.

(i1) Every bounded sequence (xn)n∈N, xn ∈ R, has U− lim xn;

(i2) If (xn)n∈N converges in the usual sense, then lim
n→∞

xn = U− lim xn;

(i3) The relations U− lim cxn = c(U− limxn) and

U− lim(xn + yn) = (U− lim xn) + (U− lim yn)

hold for every c ∈ R and (xn)n∈N, (yn)n∈N which have U-limits;

(i4) If (xn)n∈N is U-convergent and lim
n→∞

(xn − yn) = 0, then (yn)n∈N is U-
convergent and U− limxn = U− lim yn.

The above is a trivial modification of Problem 19 from Chapter 17 [17].

Lemma 4.2. Let U be a nontrivial ultrafilter on N. Then for every bounded se-
quence (xm)m∈N, xm ∈ R its U-limit coincides with a limit point of this sequence.
Conversely, if t is a limit point of (xm)m∈N, then there is a nontrivial ultrafilter U
on N such that U− lim xm = t.

Proof. The first statement of the lemma follows from the definition of the limit
points and formula (4.1) if put X = N and Φ(n) = xn in this formula and take into
account that all elements of nontrivial ultrafilter on N are infinite subsets of N.

To prove the second statement, note that for every limit point a of the sequence
(xm)m∈N there is an infinite A ⊆ N such that lim

m→∞
m∈A

xm = a. Choose an ultrafilter U

on N for which A ∈ U. Now using property (i1) we obtain a = U− limxm. 2

Let (X, d) be a metric space, X 6= ∅, and let τ : F(X) → R be a compatible
with d extended by Balk metric. Let {α1, . . . , αn} be a finite nonempty subset
of pretangent space ΩX

p,r̃ and X̃p,r̃ be a maximal self-stable subset of X̃p which
corresponds ΩX

p,r̃. Denote by π the projection X̃p,r̃ on ΩX
p,r̃, i.e. if x̃ ∈ X̃p,r̃ then
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π(x̃) = {ỹ ∈ X̃p,r̃ : d̃r̃(x̃, ỹ) = 0}. (See formula (1.7)). Choose x̃i = (xi
m)m∈N,

i = 1, . . . , n from X̃p,r̃ such that π(x̃i) = αi, i = 1, . . . , n. Put

(4.2) Xτ ({α1, . . . , αn}) := U− lim
τ(Im(x1

m, . . . , xn
m))

rm
,

where Im(x1
m, . . . , xn

m) is the set whose elements are the m-th terms of the sequences
(xi

m)m∈N, i = 1, . . . , n, rm is m-th term of normalizing sequence r̃ and U is a
nontrivial ultrafilter on N.
Theorem 4.3. Let (X, d, p) be a metric space with a marked point p and τ :
F(X) → R be an extended by Balk metric. If τ is compatible with d, then for every
pretangent space (ΩX

p,r̃, ρ) and every nontrivial ultrafilter U on N the mapping

F(ΩX
p,r̃) 3 A 7→ Xτ (A)

is correctly defined extended by Balk metric which is compatible with the metric ρ.

To prove this theorem we need the next lemma.

Lemma 4.4. Let (X, d) be a nonempty metric space and τ : F(X) → R be an
extended by Balk metric. If τ is compatible with d, then the inequalities

(4.3) τ({x1, x2, . . . , xn}) 6 d(x1, x2) + . . . + d(xn−1, xn),

and

(4.4) |τ({x1, . . . , xn})− τ({x′1, . . . , x′n})| 6
n∑

i=1

d(xi, x
′
i),

hold for every integer n > 1. Here {x1, . . . , xn} and {x′1, . . . , x′n} are arbitrary n-
elements subsets of the set X.

Proof. Without loss of generality we can suppose that n > 2. Let {x1, . . . , xn} ∈
F(X). Using (2.1) with B = {xn}, C = {xn−1} and A = {x1, . . . , xn−1} we find

τ({x1, . . . , xn}) 6 τ({x1, . . . , xn−1}) + τ({xn−1, xn})

6 τ({x1, . . . , xn−1}) + d(xn−1, xn).

Repeating this procedure we obtain inequality (4.3).
Let us check (4.4). To this end note that

|τ({x1, . . . , xn})− τ({x′1, . . . , x′n})|
6 |τ(Im(x1, x2 . . . , xn))− τ(Im(x′1, x2 . . . , xn))|

+|τ(Im(x′1, x2 . . . , xn))− τ(Im(x′1, x
′
2, x3 . . . , xn))| . . .

+|τ(Im(x′1, x
′
2 . . . , x′n−1, xn))− τ(Im(x′1, . . . , x

′
n−1, x

′
n))|.
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The sets, which are the arguments of the function τ under the signs of the absolute
value on the right-hand side of the last inequality, differ from each other by no more
than one element. Therefore, it suffices to verify the inequality

(4.5) |τ(Im(x′1, . . . , x
′
n−1, xn))− τ(Im(x′1, . . . , x

′
n−1, x

′
n))| 6 d(xn, x′n).

Without loss of generality we can suppose that

(4.6) τ(Im(x′1, . . . , x
′
n−1, xn)) > τ(Im(x′1, . . . , x

′
n−1, x

′
n)).

Using inequality (1.2) with A = {x′1, . . . , x′n−1}, B = {xn}, C = {x′n} we get

A∪B = Im(x′1, . . . , x
′
n−1, xn), A∪C = Im(x′1, . . . , x

′
n−1, x

′
n), B∪C = Im(xn, x′n)

and

τ(Im(x′1, . . . , x
′
n−1, xn))− τ(Im(x′1, . . . , x

′
n−1, x

′
n)) 6 τ({xn, x′n}) = d(xn, x′n).

The last inequality together with (4.6) gives (4.5). 2

Lemma 4.5. Let (X, d) be a nonempty metric space, let τ : F(X) → R be an
extended by Balk metric and let K ∈ F(X). If τ is compatible with d, then the
inequality

(4.7) τ(K) > 1
2
d(x, y)

holds for all x, y ∈ K.

Proof. Let A = {x}, B = {y} and C = K. Then by inequality (1.2) we have

d(x, y) = τ(A ∪B) 6 τ(A ∪K) + τ(B ∪K) = 2τ(K). 2

The proof of the Theorem 4.3. Let us check the existence of the finite U-limit on
the right-hand side of (4.2). According to property (i1) of the ultrafilters it suffices
to prove the inequality

(4.8) lim sup
m→∞

τ(Im(x1
m, . . . , xn

m))
rm

< ∞.

Using (1.7), (1.8) and (4.3) we find

lim sup
m→∞

τ(Im(x1
m, . . . , xn

m))
rm

6 lim
m→∞

d(x1
m, x2

m)
rm

+ lim
m→∞

d(x2
m, x3

m)
rm

+ . . . + lim
m→∞

d(xn−1
m , xn

m)
rm

=
n−1∑

i=1

ρ(αi, αi+1).

Inequality (4.8) follows.
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Let us make sure that the value of Xτ ({α1, . . . , αn}) given in formula (4.2) does
not depend of the choice of x̃i, i = 1, . . . , n. Let ỹi = (yi

m) be some elements of the
set X̃p,r̃ such that π(ỹi) = π(x̃i) = αi, i = 1, . . . , n.

By (4.4) we have

lim sup
m→∞

τ(Im(x1
m, . . . , xn

m))− τ(Im(y1
m, . . . , yn

m))
rm

6
n∑

i=1

(
lim

m→∞
d(xi

m, yi
m)

rm

)
=

n∑

i=1

ρ(αi, αi) = 0.

The wanted independence follows from (i4).
Let us verify that Xτ : F(ΩX

p,r̃) → R has the characteristic properties of extended
metric i.e.,

(4.9) (Xτ (A) = 0) ⇔ (|A| = 1)

and

(4.10) Xτ (A ∪B) 6 Xτ (A ∪ C) + Xτ (B ∪ C)

hold for all A,B, C ∈ F(ΩX
p,r̃).

Let |A| = 1. Then we have A = {α} for some α ∈ ΩX
p,r̃. If x̃ = (xm)m∈N ∈ X̃p,r̃

and π(x̃) = α, then (4.2) and property (i2) of the ultrafilters imply

Xτ (A) = U− lim
τ({xm})

rm
= U− lim 0 = 0.

Suppose now that A has at least two distinct points α1 = π((x1
m)m∈N) and α2 =

π((x2
m)m∈N) where (x1

m)m∈N, (x2
m)m∈N ∈ X̃p,r̃. Then inequality (4.7) implies

τ(Im(x1
m, . . . , xn

m))
rm

> 1
2

d(x1
m, x2

m)
rm

for every m ∈ N. By the definition we have

lim
m→∞

1
2

d(x1
m, x2

m)
rm

=
1
2
ρ(α1, α2) > 0.

Hence all limit points of the sequence with the common term

τ(Im(x1
m, . . . , xn

m))
rm

are positive. Therefore, by Lemma 4.2, we obtain the strict inequality Xτ (A) > 0.
Equivalence (4.9) is proved.
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Similarly, considering the limit points of the sequence that defines the value

(Xτ (A ∪B)− Xτ (A ∪ C)− Xτ (B ∪ C))

and using (1.2) and (i3) we obtain (4.10). Thus Xτ is an extended by Balk metric
on ΩX

p,r̃.
To complete the proof it remains to check that Xτ is compatible with ρ. Let

α1, α2 ∈ ΩX
p,r̃ and α1 = π((x1

m)m∈N), α2 = π((x2
m)m∈N) where (x1

m)m∈N, (x2
m)m∈N ∈

X̃p,r̃. Then from (1.7), (1.8), (4.2) and the fact that τ is compatible with d we find

Xτ ({α1, α2}) = U− lim
τ(Im(x1

m, x2
m))

rm

= U− lim
d(x1

m, x2
m)

rm
= lim

m→∞
d(x1

m, x2
m)

rm
= ρ(α1, α2),

which is what had to be proved. 2

It is rather easy to show if an extended by Balk metric τ : F(X) → R is
generated by a metric d : X2 → R, then for all pretangent spaces (ΩX

p,r̃, ρ) and
nontrivial ultrafilters U the extended metrics Xτ are generated by ρ. On the other
hand if the space (X, d) is discrete, then every pretangent space ΩX

p,r̃ is single-point.
Consequently Xτ is generated by the metric ρ as the extended by Balk metric on
the single-point space, irrespective of whether τ is generated by the metric d or not.

To describe the class of extended metrics τ : X × X → R for which Xτ is
generated by ρ, we need some ”infinitesimal” variant of Definition 2.13.

Let (X, d) be a metric space, p ∈ X and τ : F(X) → R be an extended metric
for which τ2 = d, i.e. τ is compatible with d.

Definition 4.6. The extended metric τ is generated by the metric d at the point
p if for every n ∈ N and every finite set of sequences (x1

m)m∈N, . . . , (xn
m)m∈N which

converge to p with m →∞, the relation
(4.11)
|τ(Im(x1

m, . . . , xn
m))− diamd(Im(x1

m, . . . , xn
m))| = o(max{d(x1

m, p), . . . , d(xn
m, p)})

holds, where Im(x1
m, . . . , xn

m) is defined by (1.5).

Remark 4.7. Relation (4.11) means that

(4.12) lim
m→∞

|τ(Im(x1
m, . . . , xn

m))− diamd(Im(x1
m, . . . , xn

m))|
max{d(x1

m, p), . . . , d(xn
m, p)} = 0,

with lim
m→∞

|τ(Im(x1
m,...,xn

m))−diamd(Im(x1
m,...,xn

m))|
max{d(x1

m,p),...,d(xn
m,p)} := 0 for x1

m = . . . = xn
m = p.

Theorem 4.8. Let X 6= ∅, p ∈ X and let τ : F(X) → R be an extended by Balk
metric. Then the following statements are equivalent.
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(i) For every nontrivial ultrafilter U on N and every space (ΩX
p,r̃, ρ) which is

pretangent to the metric space (X, τ2) at the point p, the extended metric
Xτ : F(ΩX

p,r̃) → R is generated by ρ.

(ii) The extended metric τ is generated by the metric τ2 at the point p.

Proof. For convenience write d := τ2.
First consider the case when p is an isolated point of the space (X, d). In this

case the equality xm = p holds for every sequence (xm)m∈N ∈ X̃p if m ∈ N is
sufficiently large. Using Remark 4.7 we see that τ is generated by d at the point
p. For isolated p any ΩX

p,r̃ is a single-point space. Property (ii) holds. To prove (i)
observe, that for the single-point space there is the unique extended metric which
is generated by the unique metric on such space.

Let us turn now to less trivial case when p is a limit point of X. Suppose (ii)
holds. Consider an arbitrary pretangent space (ΩX

p,r̃, ρ), a nontrivial ultrafilter U

on N and the extended metric Xτ : F(ΩX
p,r̃) → R which is defined by U according to

(4.2).
We must prove the equality

(4.13) Xτ (A) = diamρ A

for arbitrary A = {α1, . . . , αn} ∈ F(ΩX
p,r̃).

By Theorem 4.3, Xτ is compatible with ρ. Therefore (4.13) holds for n 6
2. So we can assume n > 3. Let X̃p,r̃ be a maximal self-stable family in X̃p

corresponding to ΩX
p,r̃ and let π : X̃p,r̃ → ΩX

p,r̃ be the projection that maps the
sequences (xm)m∈N ∈ X̃p,r̃ to their equivalence classes (see (1.8)). Relation (4.13)
can be rewritten as

(4.14) U− lim
τ(Im(x1

m, . . . , xn
m))

rm
= diamρ A,

where rm and x1
m, . . . , xn

m are the m-th elements of the normalizing sequence r̃ =
(rm)m∈N and, respectively, of the sequences (x1

m)m∈N, . . . , (xn
m)m∈N ∈ X̃p,r̃ for which

π((xi
m)) = αi, i = 1, . . . , n. The following limit relations directly follow from the

definition of the metric ρ on ΩX
p,r̃,

(4.15)
diamρ A = lim

m→∞
diamd(Im(x1

m, . . . , xn
m))

rm
,

max({ρ(α, α1), . . . , ρ(α, αn)}) = lim
m→∞

max({d(p, x1
m), . . . , d(p, xn

m)})
rm

,

where α = π(p̃), p̃ = (p, p, p . . .). Using properties (i2), (i3) of the ultrafilters,
equalities (1.8) and (4.2) and the first equality from (4.15), we can rewrite (4.14) in
the form

(4.16) U− lim
τ(Im(x1

m, . . . , xn
m))− diamd(Im(x1

m, . . . , xn
m))

rm
= 0.
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Since n > 3, then the strict inequality

max{d(x1
m, p), . . . , d(xn

m, p)} > 0

holds for sufficient large m. Using this inequality, (4.12) and the second equality
from (4.15) we find

lim
m→∞

τ(Im(x1
m, . . . , xn

m))− diamd(Im(x1
m, . . . , xn

m))
rm

=

lim
m→∞

(
τ(Im(x1

m, . . . , xn
m))− diamd(Im(x1

m, . . . , xn
m))

max{d(x1
m, p), . . . , d(xn

m, p)}
max{d(x1

m, p), . . . , d(xn
m, p)}

rm

)

= 0 ·max{ρ(α, α1), . . . , ρ(α, αn)} = 0.

Now property (i2) of the ultrafilters implies (4.16). The implication (ii) ⇒ (i) is
proved.

To complete the proof it remains to establish the converse implication (i) ⇒ (ii).
Suppose that (i) is true but (ii) is false. Then there are an integer number n > 3
and sequences (xi

m)m∈N ∈ X̃p, i = 1, . . . , n such that a limit point b of the sequence
(ym)m∈N,

ym =
τ(Im(x1

m, . . . , xn
m))− diamd(Im(x1

m, . . . , xn
m))

max{d(x1
m, p), . . . , d(xn

m, p)} ,

is nonzero, b 6= 0. The sequence (ym)m∈N is bounded. Indeed, if
diamd(Im(x1

m, . . . , xn
m)) = d(xi1

m, xi2
m), 1 6 i1, i2 6 n, then

(4.17) 0 6 diamd(Im(x1
m, . . . , xn

m))
max{d(x1

m, p), . . . , d(xn
m, p)} 6 d(xi1

m, p) + d(xi2
m, p)

max{d(x1
m, p), . . . , d(xn

m, p)} 6 2.

Similarly, using (4.3) we find

τ(Im(x1
m, . . . , xn

m)) 6
n−1∑

i=1

τ(Im(xi
m, xi+1

m )) =
n−1∑

i=1

d(xi
m, xi+1

m ),

that gives

(4.18)

0 6 τ(Im(x1
m, . . . , xn

m))
max{d(x1

m, p), . . . , d(xn
m, p)} 6

n−1∑

i=1

d(xi
m, xi+1

m )
max{d(x1

m, p), . . . , d(xn
m, p)}

6
n−1∑

i=1

d(xi
m, p) + d(xi+1

m , p)
max{d(x1

m, p), . . . , d(xn
m, p)} 6 2(n− 1).

Inequalities (4.17) and (4.18) imply the desirable boundedness. Passing from
(ym)m∈N to a suitable subsequence of (ym)m∈N it can be assumed that

(4.19) lim
m→∞

ym = b and b /∈ {0, +∞,−∞}.
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Moreover, using the conditions (xi
m)m∈N ∈ X̃p, i = 1, . . . , n and passing to a

subsequence again we can assume limm→∞max{d(x1
m, p), . . . , d(xn

m, p)} = 0 and
max{d(x1

m, p), . . . , d(xn
m, p)} > 0 for m ∈ N.

Thus the sequence (rm)m∈N with rm = max{d(x1
m, p), . . . , d(xn

m, p)} can be
selected as normalizing. Using the obvious inequalities

d(xi
m, xj

m)
rm

6 2 and
d(xi

m, p)
rm

6 1

and passing to a subsequence again we can assume that the sequences p̃, x̃1 =
(x1

m)m∈N, . . . , x̃n = (xn
m)m∈N are mutually stable. Let X̃p,r̃ be a maximal self-

stable family for which x̃i ∈ X̃p,r̃, i = 1, . . . , n and ΩX
p,r̃ be the corresponding

pretangent space. Let U be a nontrivial ultrafilter on N. Denote by αi the image of
subsequence x̃i = (xi

m)m∈N under the projection of X̃p,r̃ on ΩX
p,r̃, αi = π(x̃i). Now

using properties (i2)–(i3) and equality (4.19) we obtain

b = U− lim
τ(Im(x1

m, . . . , xn
m))− diamd(Im(x1

m, . . . , xn
m))

rm

=
(

U− lim
τ(Im(x1

m, . . . , xn
m))

rm

)
−

(
U− lim

diamd(Im(x1
m, . . . , xn

m))
rm

)

= Xτ ({α1, . . . , αn})− diamρ({α1, . . . , αn}).

Since b 6= 0 it implies the relation

Xτ ({α1, . . . , αn}) 6= diamρ({α1, . . . , αn}),

contrary to (i).
The implication (i) ⇒ (ii) follows. 2

Theorem 4.8 and some known results about pretangent spaces allow, in some
cases, to get the relatively simple answer to the question about infinitesimal struc-
ture of extended metrics τ : F(X) → R for which the corresponding extended
metrics Xτ on pretangent spaces are generated by metrics with some special prop-
erties.

Recall that a metric space (X, d) is called ultrametric if the inequality

d(x, y) 6 d(x, z) ∨ d(z, y)

holds for all x, y, z ∈ X. Here and in the sequel we set p ∨ q = max{p, q} and
p ∧ q = min{p, q} for all p, q ∈ R.

Let (X, d) be a metric spaces with a marked point p. Let us define a function
Fd : X3 → R as

Fd(x, y) :=

{
d(x,y)(d(x,p)∧d(y,p))

(d(x,p)∨d(y,p))2 if (x, y) 6= (p, p)

0 if (x, y) = (p, p)
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and a function Φd : X3 → R as Φd(x, y, z) := Fd(x, y)∨Fd(x, z)∨Fd(y, z) for every
(x, y, z) ∈ X3. For convenience we introduce the notations: d1(x, y, z) is length of
greatest side of the triangle with the sides d(x, y), d(x, z) and d(y, z) and d2(x, y, z)
is length of greatest of the two remained sides of this triangle.

Lemma 4.9.([11]) Let (X, d) be a metric space with a marked point p. All pretan-
gent spaces ΩX

p,r̃ are ultrametric if and only if

(4.20) lim
x,y,z→p

Φd(x, y, z)
(

d1(x, y, z)
d2(x, y, z)

− 1
)

= 0,

where d1(x,y,z)
d2(x,y,z) := 1 for d2(x, y, z) = 0.

Using Theorem 4.8 and Lemma 4.9 we get

Corollary 4.10. Let X 6= ∅, p ∈ X and let τ : F(X) → R be an extended by Balk
metric. The following statements are equivalent.

(i) All extended metrics Xτ : F(ΩX
p,r̃) → R are generated by ultrametrics.

(ii) The extended metric τ : F(X) → R is generated by the metric τ2 at the point
p and the equality

lim
x,y,z→p

Φτ2(x, y, z)
(

τ2
1 (x, y, z)

τ2
2 (x, y, z)

− 1
)

= 0,

holds with τ2
1 (x,y,z)

τ2
2 (x,y,z)

:= 1 for x = y = z = p.

Remark 4.11. An extended metric Xτ : F(ΩX
p,r̃) → R is generated by an ultra-

metric if and only if the inequality

Xτ (A ∪B) 6 Xτ (A ∪ C) ∨ Xτ (B ∪ C)

holds for all A,B,C ∈ F(ΩX
p,r̃). (See Theorem 2.1 in [8]).
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