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ABSTRACT. In this paper, we introduce and study a new multivalued mapping in R-
trees, called k-strictly pseudononspreading. We also introduce a new two-step iterative
process for two k-strictly pseudononspreading multivalued mappings in R-trees. Strong
convergence theorems of the proposed iteration to a common fixed point of two k-strictly
pseudononspreading multivalued mappings in R-trees are established. Our results improve
and extend the corresponding results existing in the literature.

1. Introduction

R-trees were introduced by Tits [19] in 1977. Fixed point theory for single-
valued mappings in R-trees was first studied by Kirk [10]. He proved that every
continuous single-valued mappings defined on a geodesically bounded complete R-
tree always has a fixed point. Since then fixed point theorems for various types of
single-valued and multivalued mappings in R-trees has been rapidly developed and
many of papers have appeared (see e.g. [1],[2],[3],[8],[12]). It is worth mentioning
that fixed point theorems in R-trees can be applied to graph theory, biology and
computer science (see e.g., [4],[6],[11],[17]).

In 2009, Shahzad and Zegeye [18] proved strong convergence theorems of the
Ishikawa iteration for quasi-nonexpansive multivalued mappings satisfying the end-
point condition in Banach spaces. Later in 2010, Puttasontiphot [15] obtained
similar results in complete CAT(0) spaces. In 2012, Samanmit and Panyanak [16]
introduced a condition on mappings in R-trees which is more general than the end-
point condition, call it the gate condition, and proved strong convergence theorems
of a modified Ishikawa iteration for quasi-nonexpansive multivalued mappings sat-
isfying such condition.
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In 2011, Osilike and Isiogugu [14] introduced a new single-valued mapping in
a Hilbert space, namely k-strictly pseudononspreading. Recall that a single-valued
mapping T is called k-strictly pseudononspreading if

(1) Tz =Ty|* < e —yl* + klle = Tz — (y = Ty)|* + 2(z = T,y — Ty)
for all z,y € D(T'). In a Hilbert space, it is easy to show that (1.1) is equivalent to

2= W) Tz = Tyl* < ko —ylI* + 1 = B)lly = Tal* + (1 - k)||l= — Ty|*
+kllz = Tz + klly — Ty|?

for all x,y € D(T). Osilike and Isiogugu also proved weak and strong convergence
theorems for approximating fixed points of k-strictly pseudononspreading mappings
in Hilbert spaces.

However, up to now, no researchers have studied fixed point theorems for mul-
tivalued k-strictly pseudononspreading mappings even in Hilbert spaces, Banach
spaces, CAT(0) spaces and R-trees setting. The propose of this paper is to intro-
duce the concept of k-strictly pseudononspreading multivalued mappings and to
obtain the strong convergence theorems for approximating a common fixed point of
those multivalued mappings in the framework of R-trees under the gate condition.

2. Preliminaries

Let (X,d) be a metric space. A geodesic path joining z € X toy € X is a
map ¢ from a closed interval [0,1] C R to X such that ¢(0) = z, ¢(l) = y, and
d(c(ty), c(t2)) = [t1 — to] for all ¢1,t2 € [0,1]. In particular, ¢ is an isometry and
d(z,y) = l. The image of c is called a geodesic (or metric) segment joining z and
y. When it is unique this geodesic segment is denoted by [x,y]. For each z,y € X
and a € (0,1), we denote the point z € [z,y] such that d(x,z) = ad(z,y) by
(1 — a)x @ ay. The space (X, d) is said to be a geodesic metric space if every two
points of X are joined by a geodesic, and X is said to be uniquely geodesic if there
is exactly one geodesic joining = and y for each z,y € X.

A nonempty subset D of X is said to be convex if D includes every geodesic
segment joining any two of its points. A nonempty subset D of X is said to be
gated if for any point & & D there is a unique point y, such that for any z € D,

d(z,2) = d(z,ys) + d(Yz, 2)-

Clearly gated sets in a complete geodesic space are always closed and convex. The
point y, is called the gate of x in D. It is easy to see that y, is also the unique
nearest point of x in D.

Definition 2.1. An R-tree is a geodesic metric space X satisfying
(i) there is a unique geodesic segment [z, y| joining each pair of points x,y € X;

(i) if [y, 2] N [z, z] = {«}, then [y, z] U [z, z] = [y, 2].
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It follows by (i) and (ii) that
(iii) if w,v,w € X, then [u,v] N [u,w] = [u, 2] for some z € X.

An R-tree is a special case of a CAT(0) space. Note that a metric space X is a
complete R-tree if and only if X is hyperconvex with unique metric segments; see
[9].

Let T : D — 2P be a multivalued mapping. An element z € D is called fized
point of T if z € Tz. An element p € D is said to be an endpoint of T if p is a fixed
point of T and T'p = {p} (see [20]). We shall denote by F(T') the set of all fixed
points of T' and by End(T) the set of all endpoints of T'. It is easy to see that for
each T, End(T) C F(T) and the converse is not true in general. If End(T) = F(T)
then we say that T satisfies the endpoint condition.

We shall denote the family of nonempty closed bounded subsets of D by CB(D),
the family of nonempty closed convex subsets of D by CC(D), and the family of
nonempty compact convex subsets of D by KC(D). The Hausdorff metric on
CB(D) is defined by

H(A, B) = max {sup dist(z, B), sup dist(y,A)} for A,B € CB(D).
T€EA yebB

The multivalued mapping T': D — CB(D) is called
(i) nonexpansive if H(Tz,Ty) < d(z,y) for all z,y € D;

(i) quasi-nonezpansive if F(T) # 0 and H(Tx,Tz) < d(z,z) for all z € D and
z € F(T);

(iii) L-Lipschitzian if there exists a constant L > 0 such that H(Tz,Ty) <
Ld(x,y) for all z,y € D;

(iv) hemicompact if for any sequence {x, } in D such that lim,,_, dist(x,, Tz,) =
0, there exists a subsequence {x,,, } of {x,,} such that {x,,} converges strongly
to p € D. We note that if D is compact, then every multivalued mapping
T : D — CB(D) is hemicompact.

It is clear that every nonexpansive multivalued mapping T with F(T) # 0
is quasi-nonexpansive but there exist quasi-nonexpansive mappings that are not
nonexpansive.

Let T : D — CC(D) be a multivalued mapping with F(T") # (). We say that a
point u € D is a key of T if, for each z € F(T), = is the gate of u in Tz. We say
that T satisfies the gate condition if T has a key in D. It is clear that the endpoint
condition implies the gate condition but the converse is not true.

We now collect some basic properties of R-trees.

Lemma 2.2. Let X be a complete R-tree. Then the following statements hold:
(i) [ if z,y,z € X and a € [0, 1], then
d(z,0r @ (1 —a)y)? < ad(z,2)? + (1 — a)d(z,9)* — a(l — a)d(z,y)?;



376 Withun Phuengrattana

(ii) [7] if z,y,2 € X, then d(z,z) + d(z,y) = d(z,y) if and only if z € [z,y];
(iii) [12] if A and B are bounded closed convex subsets of X, then
d(Pa(u), Pp(u)) < H(A, B)
for any v € X, where Pa(u), Pg(u) are respectively the unique nearest points
ofuin A and B;
(iv) [8] the gate subsets of X are precisely its closed and convex subsets.
We state the following conditions in R-trees:

A multivalued mapping T': D — C'B(D) is said to satisfy condition (I) if there
exists a nondecreasing function f : [0, 00) — [0,00) with f(0) =0 and f(r) > 0 for
all 7 > 0 such that dist(x,Tz) > f(dist(x, F(T))) for all x € D.

Two multivalued mappings T7,Ts : D — CB(D) are said to satisfy condition
(1) if there exists a nondecreasing function f : [0,00) — [0,00) with f(0) = 0 and
f(r) > 0 for all » > 0 such that either dist(x,Thz) > f(dist(z, F(T1) N F(T%))) or
dist(x, Tox) > f(dist(x, F(T1) N F(Ty))) for all x € D.

The following results are needed for proving our results.

Lemma 2.3.([13]) Let X be a complete metric space, A be a bounded closed subset
of X, and B be a compact subset of X. If x € A then there exists y € B such that
d(z,y) < H(A, B).

Proposition 2.4.([5]) Let (X,d) be a complete metric space and F be a nonempty
closed subset of X. Let {x,} be a sequence in X such that d(xy41,p) < d(xyn,p) for
allp € F and n € N. Then {x,} converges strongly to some point in F if and only
if limy,— oo dist(zy,, F).

3. Main Results

Definition 3.1. Let D be a nonempty subset of a complete R-tree X. A multival-
ued mapping T : D — CB(D) is called

(i) nonspreading if
2H(Tz, Ty)?* < dist(y, Tx)? + dist(x, Ty)?
for all z,y € D.

(i) k-strictly pseudononspreading if there exists k € [0,1) such that

(2 — k)H(Tz,Ty)? < kd(z,y)? + (1 — k) dist(y, Tx)* + (1 — k) dist(z, Ty)?
+ kdist(z, Tx)? + kdist(y, Ty)?

for all z,y € D.
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Clearly every nonspreading multivalued mapping is O-strictly pseudononspread-
ing. It is clear that if T is k-strictly pseudononspreading and has a fixed point, then
for all z € D and p € F(T) we have

H(Tx,Tp)* < d(x,p)* + kdist(z, Tx)?%.

So, T may not be quasi-nonexpansive. It is easy to show that if T" is a k-strictly
pseudononspreading multivalued mapping with F(T) # 0, then F(T) is closed.
Indeed, we let {z,} be a sequence in F(T) such that z, — = as n — oo. By the
definition of T, we have

H(Txz,Tx,)* < d(x,x,)* + kdist(z, Tz)?
< (d(x,x,) + VEdist(z, Tx))?.
Then
H(Tx,Tz,) < d(x,z,) + VEdist(z, Tz).
It follows that
dist(z, Tx) < dist(z, Txz,) + H(Tx,, Tx)
< 2d(x, ) + VE dist(z, Tx).
By letting n — oo in above inequality, we have (1 — v/k)dist(z, Tz) < 0. Since
k €10,1), we get dist(z,Tx) = 0. Hence, x € Tz so that F(T) is closed.
In order to prove our main results, the following lemma is needed.

Lemma 3.2. Let D be a nonempty closed convex subset of a complete R-tree
X. Assume that T : D — KC(D) is a k-strictly pseudononspreading multivalued
mapping. If {x,} is a sequence in D such that ©, — x and dist(x,,Tz,) — 0 as
n — oo, then x € Tx.

Proof. Let {z,} be a sequence in D such that x,, — = and dist(x,,Tz,) — 0 as
n — oo. For each n, let y,, € Tx, such that d(z,,y,) = dist(x,, Tz,). Since Tz
is compact, by Lemma 2.3, there exist z, € Tx such that d(yn, z,) < H(Tz,, Tx).
Then, we have

(2 = k)d(Yn, 20)? < (2 — K)H(Tz,,, Tx)*
< kd(zn, ) + (1 — k) dist(z, Tz,)? + (1 — k) dist(z,,, Tx)?
+ kdist(2y,, Tz, )? + kdist(2, Tx)?
< kd(zn, )? + (1 — k) (d(2,yn)? + d(zn, 20)?) + kdist(z,, T2,)?
+ kdist(z, Tx)?
< kd(wp,2)* + (1 = k)(d(2,yn) + d(Tn, 2,))? + kdist(2,, Tz )?
+ kdist(x, Tx)?
< kd(zn,2)” + (1= k)(d(z, 2n) + 2d(2, yn) + d(yn, 2n))
(3.1) + k dist(2y,, Txy,)? + k dist(z, Tz)?.
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Compactness of Tz implies that there exists a subsequence {zy,, } of {z,} such that
Zn, — 2 € T as i — co. Then, it follows by (3.1) that

lim d(yp,, zn,) < VEdist(z, Tx).
71— 00
This implies

d(z,z) = lim d(zp,, 2)

11— 00

< lim d(zn,;, Yn,) + d(Yn,, 2n,) + d(2n;, 2)

11— 00

= hm d(ymazm)

< Vkdist(z, Tz)
<Vkd(z,z).

Thus, (1 — vk)d(x,2) = 0. Since k € [0,1), it implies that z = 2 € Tx. O

Theorem 3.3. Let D be a nonempty closed conver subset of a complete R-tree X.
Let Th : D — KC(D) be a k-strictly pseudononspreading multivalued mapping and
Ty : D — KC(D) be a k-strictly pseudononspreading and L-Lipschitzian multivalued
mapping with F = F(Ty)NF(Ty) # 0. Suppose that Ty, Ty satisfy the gate condition.
Let uy,us be keys of Th, T, respectively. For 1 € D, the sequence {x,} generated
by

Yn = (1 —ap)z, ® anzﬁll) for allm € N,

where 27(11) is the gate of uy in Tixz,, and
Tnp1 = (1= Bn)yn @ Bn2?) for alln €N,

where 22 is the gate of uy in Toyy,. Let {an} and {B,} be sequences in [0,1] such

that 0 < a < ay, By, < b < 1—Fk. If one of the following is satisfied:
(i) Th,Ts satisfy condition (II),
(ii) T1 or Ty is hemicompact,

then {x,} converges strongly to an element of F.
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Proof. For each p € F, we obtain by the gate condition and Lemma 2.2(i) that

d(wn11,0)* < (1= Bn)d(yn, p)* + Bud (25D, p)* = Bu(1 = B)d(yn, 27))?
< (1= Bo)d(Yn,p)* + Bnd(Pryy, (u2), Pryp(us))® — Bu(1 = Ba)d(yn, 22)?
< (1= Bu)d(Yn,p)* + anH(Toyn, Top)* = Bn(1 = Bn)d(yn, 2))?
< (1= Bn)d(Yn, 2)? + Bu(d(yn, p)? + k dist(yn, Toyn)?)

- /Bn( - ﬁn) (yna (2))

= d(Yn, ) = Bn(1 =k = Br)d(yn, 2 ))2

< (1= an)d(wn, p)* + and(23),p)* = an (1 — ap)d(y, 2{))
— Bn(1 =k — Bp)d (ynv ))2

< (1 - an)d(xnﬂp) + and(PTla:n (u1)7PT1;D(u1))2 - Oén(l - a”)d(x”7 27(11))2
— Bn(1 =k — Bp)d (ynv ))2

< (1 = a)d(@n, p)? + n H(Tyn, Tip)? — an (1 — an)d(2, 28)?
— Bn(1 =k — Bp)d (ynv ))2

<(1- an)d(wn,p) + an(d(ocn,p)2 + kzdist(xn,Tlxn)2)
- Oén(l - an)d(xna Zg))Q - ﬁn(l —k— 6n)d(yna 222))2

(3.2) = cl(ncn,p)2 —an(l =k —ap)d(z,, zT(Ll))2 — Bn(1 =k = 8)d(yn, 27(12))2.

This implies by «y, 8, < 1 — k that d(x,y1,p) < d(zn,p) for all n € N. Hence,
{d(zn,p)} is nonincreasing and bounded below. It follows that lim, . d(x,,p)
exists for each p € F. Using (3.2), we get that

an(l - k - an)d(l‘ny ) + ﬁn(l - k; Bn) (yna ( ) < d(asn,p) d(xn+l7p)2'
This implies from 0 < a < ay,, 6, < b < 1 —k that

(3.3) lim d(zp,2") =0 and lim d(y,,z?)=0.

n—oo n—oo

Also

(3.4) dist(z,, Tyzp) < d(zp, 2(M) — 0 as n — oo.
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By the definition of T5, we get that
diSt(xn; T2~77n) S diSt(In, TQyn) + H(TQyna Tan)
< d(fnv 7(12)) + Ld(ynaxn)
< (14 L)d(zp,yn) + d(yn, ,(L2))

< (1+ L)(d(z, <1>)+d( yn)) + d(yn, 22))

= (14 L)(d(zn, 287) + (1 = an)d(2(), 7)) + dlyn, 2$P)
= (14 L)(2 - an)d(zn, S))er(y )

< (14 L)(2 — a)d(zn, 2) + d(yn, 22).

This implies by (3.3) that
(3.5) dist(z,, Tox,) — 0 as n — oo.

Case (¢): Ty,Ty satisfy the condition (/7). Then, we have by (3.4) and (3.5)
that lim, . d(x,,F) = 0. By the closedness of F and Proposition 2.4, we have
{zn} converges strongly to some point in F.

Case (i7): Ty or Ty is hemicompact. Without loss of generality, we assume that
T, is hemicompact. Then there exists a subsequence {z,, } of {z,} such that {z,,}
converges strongly to z € D. By (3.4) and (3.5), it follows by Lemma 3.2 that
z € §F. Since lim,,_, oo d(xy, p) exists for each p € F, it implies that {x,} converges
strongly to z € J. O

Since any nonspreading multivalued mapping is 0-strictly pseudononspreading
multivalued mapping, the next corollary is obtained immediately from Theorem 3.3.

Corollary 3.4. Let D be a nonempty closed convex subset of a complete R-
tree X. Let Ty : D — KC(D) be a nonspreading multivalued mapping and
Ty : D — KC(D) be a nonspreading and L-Lipschitzian multivalued mapping with
F =F(Th) N F(Ty) # 0. Suppose that Ty, Ty satisfy the gate condition. Let uy,usg
be keys of T1,Ts, respectively. For x1 € D, the sequence {x,} generated by

Yn = (1 - an)xn ® Qp 2y fOT alln S N
(1)

where zy ' is the gate of uy in Tix,, and
Tpg1 = (1= Bn)yn @ 57127@ for alln € N,
where 252 is the gate of ug in Toy,. Let {an} and {B,} be sequences in [0, 1] such

that 0 < a < ay, Bn < b < 1. If one of the following is satisfied:
(i) T1,T» satisfy condition (I1),

(ii) T or Ty is hemicompact,
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then {x,} converges strongly to an element of F.

Using the same arguments as in the proof of Theorem 3.3, we obtain the fol-
lowing result for approximating a fixed point of a k-strictly pseudononspreading
multivalued mapping in R-trees.

Theorem 3.5. Let D be a nonempty closed convex subset of a complete R-tree X.
Let T : D — KC(D) be a k-strictly pseudononspreading multivalued mapping with
F(T) # 0. Suppose that T satisfies the gate condition. Let u be a key of T. For
x1 € D, the sequence {x,} generated by

Tnt1 = (1 — )Ty @ apzy for alln €N,

where z, is the gate of u in Tx,,. Let {ay,} be a sequence in [0,1] such that 0 < a <
an <b< 1—k. If either T satisfy condition (I) or T is hemicompact, then {x,}
converges strongly to an element of F(T).

Proof. In Theorem 3.3, put 73 = T and T5 = I (identity mapping). Hence, we
obtain the desired result from Theorem 3.3. a

Remark 3.6. Theorem 3.3 extends [16] to the case of two k-strictly pseudonon-
spreading multivalued mappings and our iteration process is different from the it-
eration process defined by Samanmit and Panyanak [16].
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