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Abstract. In this paper, we introduce and study a new multivalued mapping in R-

trees, called k-strictly pseudononspreading. We also introduce a new two-step iterative

process for two k-strictly pseudononspreading multivalued mappings in R-trees. Strong

convergence theorems of the proposed iteration to a common fixed point of two k-strictly

pseudononspreading multivalued mappings in R-trees are established. Our results improve

and extend the corresponding results existing in the literature.

1. Introduction

R-trees were introduced by Tits [19] in 1977. Fixed point theory for single-
valued mappings in R-trees was first studied by Kirk [10]. He proved that every
continuous single-valued mappings defined on a geodesically bounded complete R-
tree always has a fixed point. Since then fixed point theorems for various types of
single-valued and multivalued mappings in R-trees has been rapidly developed and
many of papers have appeared (see e.g. [1],[2],[3],[8],[12]). It is worth mentioning
that fixed point theorems in R-trees can be applied to graph theory, biology and
computer science (see e.g., [4],[6],[11],[17]).

In 2009, Shahzad and Zegeye [18] proved strong convergence theorems of the
Ishikawa iteration for quasi-nonexpansive multivalued mappings satisfying the end-
point condition in Banach spaces. Later in 2010, Puttasontiphot [15] obtained
similar results in complete CAT(0) spaces. In 2012, Samanmit and Panyanak [16]
introduced a condition on mappings in R-trees which is more general than the end-
point condition, call it the gate condition, and proved strong convergence theorems
of a modified Ishikawa iteration for quasi-nonexpansive multivalued mappings sat-
isfying such condition.
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In 2011, Osilike and Isiogugu [14] introduced a new single-valued mapping in
a Hilbert space, namely k-strictly pseudononspreading. Recall that a single-valued
mapping T is called k-strictly pseudononspreading if

(1.1) ‖Tx− Ty‖2 ≤ ‖x− y‖2 + k‖x− Tx− (y − Ty)‖2 + 2〈x− Tx, y − Ty〉
for all x, y ∈ D(T ). In a Hilbert space, it is easy to show that (1.1) is equivalent to

(2− k)‖Tx− Ty‖2 ≤ k‖x− y‖2 + (1− k)‖y − Tx‖2 + (1− k)‖x− Ty‖2
+ k‖x− Tx‖2 + k‖y − Ty‖2

for all x, y ∈ D(T ). Osilike and Isiogugu also proved weak and strong convergence
theorems for approximating fixed points of k-strictly pseudononspreading mappings
in Hilbert spaces.

However, up to now, no researchers have studied fixed point theorems for mul-
tivalued k-strictly pseudononspreading mappings even in Hilbert spaces, Banach
spaces, CAT(0) spaces and R-trees setting. The propose of this paper is to intro-
duce the concept of k-strictly pseudononspreading multivalued mappings and to
obtain the strong convergence theorems for approximating a common fixed point of
those multivalued mappings in the framework of R-trees under the gate condition.

2. Preliminaries

Let (X, d) be a metric space. A geodesic path joining x ∈ X to y ∈ X is a
map c from a closed interval [0, l] ⊂ R to X such that c(0) = x, c(l) = y, and
d(c(t1), c(t2)) = |t1 − t2| for all t1, t2 ∈ [0, l]. In particular, c is an isometry and
d(x, y) = l. The image of c is called a geodesic (or metric) segment joining x and
y. When it is unique this geodesic segment is denoted by [x, y]. For each x, y ∈ X
and α ∈ (0, 1), we denote the point z ∈ [x, y] such that d(x, z) = αd(x, y) by
(1 − α)x ⊕ αy. The space (X, d) is said to be a geodesic metric space if every two
points of X are joined by a geodesic, and X is said to be uniquely geodesic if there
is exactly one geodesic joining x and y for each x, y ∈ X.

A nonempty subset D of X is said to be convex if D includes every geodesic
segment joining any two of its points. A nonempty subset D of X is said to be
gated if for any point x 6∈ D there is a unique point yx such that for any z ∈ D,

d(x, z) = d(x, yx) + d(yx, z).

Clearly gated sets in a complete geodesic space are always closed and convex. The
point yx is called the gate of x in D. It is easy to see that yx is also the unique
nearest point of x in D.

Definition 2.1. An R-tree is a geodesic metric space X satisfying

(i) there is a unique geodesic segment [x, y] joining each pair of points x, y ∈ X;

(ii) if [y, x] ∩ [x, z] = {x}, then [y, x] ∪ [x, z] = [y, z].
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It follows by (i) and (ii) that

(iii) if u, v, w ∈ X, then [u, v] ∩ [u,w] = [u, z] for some z ∈ X.

An R-tree is a special case of a CAT(0) space. Note that a metric space X is a
complete R-tree if and only if X is hyperconvex with unique metric segments; see
[9].

Let T : D → 2D be a multivalued mapping. An element z ∈ D is called fixed
point of T if z ∈ Tz. An element p ∈ D is said to be an endpoint of T if p is a fixed
point of T and Tp = {p} (see [20]). We shall denote by F (T ) the set of all fixed
points of T and by End(T ) the set of all endpoints of T . It is easy to see that for
each T , End(T ) ⊆ F (T ) and the converse is not true in general. If End(T ) = F (T )
then we say that T satisfies the endpoint condition.

We shall denote the family of nonempty closed bounded subsets of D by CB(D),
the family of nonempty closed convex subsets of D by CC(D), and the family of
nonempty compact convex subsets of D by KC(D). The Hausdorff metric on
CB(D) is defined by

H(A,B) = max
{

sup
x∈A

dist(x,B), sup
y∈B

dist(y, A)
}

for A, B ∈ CB(D).

The multivalued mapping T : D → CB(D) is called

(i) nonexpansive if H(Tx, Ty) ≤ d(x, y) for all x, y ∈ D;

(ii) quasi-nonexpansive if F (T ) 6= ∅ and H(Tx, Tz) ≤ d(x, z) for all x ∈ D and
z ∈ F (T );

(iii) L-Lipschitzian if there exists a constant L > 0 such that H(Tx, Ty) ≤
Ld(x, y) for all x, y ∈ D;

(iv) hemicompact if for any sequence {xn} in D such that limn→∞ dist(xn, Txn) =
0, there exists a subsequence {xni} of {xn} such that {xni} converges strongly
to p ∈ D. We note that if D is compact, then every multivalued mapping
T : D → CB(D) is hemicompact.

It is clear that every nonexpansive multivalued mapping T with F (T ) 6= ∅
is quasi-nonexpansive but there exist quasi-nonexpansive mappings that are not
nonexpansive.

Let T : D → CC(D) be a multivalued mapping with F (T ) 6= ∅. We say that a
point u ∈ D is a key of T if, for each x ∈ F (T ), x is the gate of u in Tx. We say
that T satisfies the gate condition if T has a key in D. It is clear that the endpoint
condition implies the gate condition but the converse is not true.

We now collect some basic properties of R-trees.

Lemma 2.2. Let X be a complete R-tree. Then the following statements hold:

(i) [7] if x, y, z ∈ X and α ∈ [0, 1], then

d(z, αx⊕ (1− α)y)2 ≤ αd(z, x)2 + (1− α)d(z, y)2 − α(1− α)d(x, y)2;
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(ii) [7] if x, y, z ∈ X, then d(x, z) + d(z, y) = d(x, y) if and only if z ∈ [x, y];

(iii) [12] if A and B are bounded closed convex subsets of X, then

d(PA(u), PB(u)) ≤ H(A, B)

for any u ∈ X, where PA(u), PB(u) are respectively the unique nearest points
of u in A and B;

(iv) [8] the gate subsets of X are precisely its closed and convex subsets.

We state the following conditions in R-trees:

A multivalued mapping T : D → CB(D) is said to satisfy condition (I) if there
exists a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0 and f(r) > 0 for
all r > 0 such that dist(x, Tx) ≥ f(dist(x, F (T ))) for all x ∈ D.

Two multivalued mappings T1, T2 : D → CB(D) are said to satisfy condition
(II) if there exists a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0 and
f(r) > 0 for all r > 0 such that either dist(x, T1x) ≥ f(dist(x, F (T1) ∩ F (T2))) or
dist(x, T2x) ≥ f(dist(x, F (T1) ∩ F (T2))) for all x ∈ D.

The following results are needed for proving our results.

Lemma 2.3.([13]) Let X be a complete metric space, A be a bounded closed subset
of X, and B be a compact subset of X. If x ∈ A then there exists y ∈ B such that
d(x, y) ≤ H(A,B).

Proposition 2.4.([5]) Let (X, d) be a complete metric space and F be a nonempty
closed subset of X. Let {xn} be a sequence in X such that d(xn+1, p) ≤ d(xn, p) for
all p ∈ F and n ∈ N. Then {xn} converges strongly to some point in F if and only
if limn→∞ dist(xn, F ).

3. Main Results

Definition 3.1. Let D be a nonempty subset of a complete R-tree X. A multival-
ued mapping T : D → CB(D) is called

(i) nonspreading if

2H(Tx, Ty)2 ≤ dist(y, Tx)2 + dist(x, Ty)2

for all x, y ∈ D.

(ii) k-strictly pseudononspreading if there exists k ∈ [0, 1) such that

(2− k)H(Tx, Ty)2 ≤ kd(x, y)2 + (1− k) dist(y, Tx)2 + (1− k) dist(x, Ty)2

+ k dist(x, Tx)2 + k dist(y, Ty)2

for all x, y ∈ D.
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Clearly every nonspreading multivalued mapping is 0-strictly pseudononspread-
ing. It is clear that if T is k-strictly pseudononspreading and has a fixed point, then
for all x ∈ D and p ∈ F (T ) we have

H(Tx, Tp)2 ≤ d(x, p)2 + k dist(x, Tx)2.

So, T may not be quasi-nonexpansive. It is easy to show that if T is a k-strictly
pseudononspreading multivalued mapping with F (T ) 6= ∅, then F (T ) is closed.
Indeed, we let {xn} be a sequence in F (T ) such that xn → x as n → ∞. By the
definition of T , we have

H(Tx, Txn)2 ≤ d(x, xn)2 + k dist(x, Tx)2

≤ (d(x, xn) +
√

k dist(x, Tx))2.

Then

H(Tx, Txn) ≤ d(x, xn) +
√

k dist(x, Tx).

It follows that

dist(x, Tx) ≤ dist(x, Txn) + H(Txn, Tx)

≤ 2d(x, xn) +
√

k dist(x, Tx).

By letting n → ∞ in above inequality, we have (1 −
√

k) dist(x, Tx) ≤ 0. Since
k ∈ [0, 1), we get dist(x, Tx) = 0. Hence, x ∈ Tx so that F (T ) is closed.

In order to prove our main results, the following lemma is needed.

Lemma 3.2. Let D be a nonempty closed convex subset of a complete R-tree
X. Assume that T : D → KC(D) is a k-strictly pseudononspreading multivalued
mapping. If {xn} is a sequence in D such that xn → x and dist(xn, Txn) → 0 as
n →∞, then x ∈ Tx.

Proof. Let {xn} be a sequence in D such that xn → x and dist(xn, Txn) → 0 as
n → ∞. For each n, let yn ∈ Txn such that d(xn, yn) = dist(xn, Txn). Since Tx
is compact, by Lemma 2.3, there exist zn ∈ Tx such that d(yn, zn) ≤ H(Txn, Tx).
Then, we have

(2− k)d(yn, zn)2 ≤ (2− k)H(Txn, Tx)2

≤ kd(xn, x)2 + (1− k) dist(x, Txn)2 + (1− k) dist(xn, Tx)2

+ k dist(xn, Txn)2 + k dist(x, Tx)2

≤ kd(xn, x)2 + (1− k)(d(x, yn)2 + d(xn, zn)2) + k dist(xn, Txn)2

+ k dist(x, Tx)2

≤ kd(xn, x)2 + (1− k)(d(x, yn) + d(xn, zn))2 + k dist(xn, Txn)2

+ k dist(x, Tx)2

≤ kd(xn, x)2 + (1− k)(d(x, xn) + 2d(xn, yn) + d(yn, zn))2

+ k dist(xn, Txn)2 + k dist(x, Tx)2.(3.1)
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Compactness of Tx implies that there exists a subsequence {zni} of {zn} such that
zni

→ z ∈ Tx as i →∞. Then, it follows by (3.1) that

lim
i→∞

d(yni , zni) ≤
√

k dist(x, Tx).

This implies

d(x, z) = lim
i→∞

d(xni
, z)

≤ lim
i→∞

d(xni
, yni

) + d(yni
, zni

) + d(zni
, z)

= lim
i→∞

d(yni
, zni

)

≤
√

k dist(x, Tx)

≤
√

k d(x, z).

Thus, (1−
√

k)d(x, z) = 0. Since k ∈ [0, 1), it implies that x = z ∈ Tx. 2

Theorem 3.3. Let D be a nonempty closed convex subset of a complete R-tree X.
Let T1 : D → KC(D) be a k-strictly pseudononspreading multivalued mapping and
T2 : D → KC(D) be a k-strictly pseudononspreading and L-Lipschitzian multivalued
mapping with F = F (T1)∩F (T2) 6= ∅. Suppose that T1, T2 satisfy the gate condition.
Let u1, u2 be keys of T1, T2, respectively. For x1 ∈ D, the sequence {xn} generated
by

yn = (1− αn)xn ⊕ αnz(1)
n for all n ∈ N,

where z
(1)
n is the gate of u1 in T1xn, and

xn+1 = (1− βn)yn ⊕ βnz(2)
n for all n ∈ N,

where z
(2)
n is the gate of u2 in T2yn. Let {αn} and {βn} be sequences in [0, 1] such

that 0 < a ≤ αn, βn ≤ b < 1− k. If one of the following is satisfied:

(i) T1, T2 satisfy condition (II),

(ii) T1 or T2 is hemicompact,

then {xn} converges strongly to an element of F.
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Proof. For each p ∈ F, we obtain by the gate condition and Lemma 2.2(i) that

d(xn+1, p)2 ≤ (1− βn)d(yn, p)2 + βnd(z(2)
n , p)2 − βn(1− βn)d(yn, z(2)

n )2

≤ (1− βn)d(yn, p)2 + βnd(PT2yn
(u2), PT2p(u2))2 − βn(1− βn)d(yn, z(2)

n )2

≤ (1− βn)d(yn, p)2 + αnH(T2yn, T2p)2 − βn(1− βn)d(yn, z(2)
n )2

≤ (1− βn)d(yn, p)2 + βn(d(yn, p)2 + k dist(yn, T2yn)2)

− βn(1− βn)d(yn, z(2)
n )2

= d(yn, p)2 − βn(1− k − βn)d(yn, z(2)
n )2

≤ (1− αn)d(xn, p)2 + αnd(z(1)
n , p)2 − αn(1− αn)d(xn, z(1)

n )2

− βn(1− k − βn)d(yn, z(2)
n )2

≤ (1− αn)d(xn, p)2 + αnd(PT1xn
(u1), PT1p(u1))2 − αn(1− αn)d(xn, z(1)

n )2

− βn(1− k − βn)d(yn, z(2)
n )2

≤ (1− αn)d(xn, p)2 + αnH(T1xn, T1p)2 − αn(1− αn)d(xn, z(1)
n )2

− βn(1− k − βn)d(yn, z(2)
n )2

≤ (1− αn)d(xn, p)2 + αn(d(xn, p)2 + k dist(xn, T1xn)2)

− αn(1− αn)d(xn, z(1)
n )2 − βn(1− k − βn)d(yn, z(2)

n )2

= d(xn, p)2 − αn(1− k − αn)d(xn, z(1)
n )2 − βn(1− k − βn)d(yn, z(2)

n )2.(3.2)

This implies by αn, βn < 1 − k that d(xn+1, p) ≤ d(xn, p) for all n ∈ N. Hence,
{d(xn, p)} is nonincreasing and bounded below. It follows that limn→∞ d(xn, p)
exists for each p ∈ F. Using (3.2), we get that

αn(1− k − αn)d(xn, z(1)
n )2 + βn(1− k − βn)d(yn, z(2)

n )2 ≤ d(xn, p)2 − d(xn+1, p)2.

This implies from 0 < a ≤ αn, βn ≤ b < 1− k that

lim
n→∞

d(xn, z(1)
n ) = 0 and lim

n→∞
d(yn, z(2)

n ) = 0.(3.3)

Also

dist(xn, T1xn) ≤ d(xn, z(1)
n ) → 0 as n →∞.(3.4)
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By the definition of T2, we get that

dist(xn, T2xn) ≤ dist(xn, T2yn) + H(T2yn, T2xn)

≤ d(xn, z(2)
n ) + Ld(yn, xn)

≤ (1 + L)d(xn, yn) + d(yn, z(2)
n )

≤ (1 + L)(d(xn, z(1)
n ) + d(z(1)

n , yn)) + d(yn, z(2)
n )

= (1 + L)(d(xn, z(1)
n ) + (1− αn)d(z(1)

n , xn)) + d(yn, z(2)
n )

= (1 + L)(2− αn)d(xn, z(1)
n ) + d(yn, z(2)

n )

≤ (1 + L)(2− a)d(xn, z(1)
n ) + d(yn, z(2)

n ).

This implies by (3.3) that

dist(xn, T2xn) → 0 as n →∞.(3.5)

Case (i): T1, T2 satisfy the condition (II). Then, we have by (3.4) and (3.5)
that limn→∞ d(xn, F) = 0. By the closedness of F and Proposition 2.4, we have
{xn} converges strongly to some point in F.

Case (ii): T1 or T2 is hemicompact. Without loss of generality, we assume that
T1 is hemicompact. Then there exists a subsequence {xni} of {xn} such that {xni}
converges strongly to z ∈ D. By (3.4) and (3.5), it follows by Lemma 3.2 that
z ∈ F. Since limn→∞ d(xn, p) exists for each p ∈ F, it implies that {xn} converges
strongly to z ∈ F. 2

Since any nonspreading multivalued mapping is 0-strictly pseudononspreading
multivalued mapping, the next corollary is obtained immediately from Theorem 3.3.

Corollary 3.4. Let D be a nonempty closed convex subset of a complete R-
tree X. Let T1 : D → KC(D) be a nonspreading multivalued mapping and
T2 : D → KC(D) be a nonspreading and L-Lipschitzian multivalued mapping with
F = F (T1) ∩ F (T2) 6= ∅. Suppose that T1, T2 satisfy the gate condition. Let u1, u2

be keys of T1, T2, respectively. For x1 ∈ D, the sequence {xn} generated by

yn = (1− αn)xn ⊕ αnz(1)
n for all n ∈ N,

where z
(1)
n is the gate of u1 in T1xn, and

xn+1 = (1− βn)yn ⊕ βnz(2)
n for all n ∈ N,

where z
(2)
n is the gate of u2 in T2yn. Let {αn} and {βn} be sequences in [0, 1] such

that 0 < a ≤ αn, βn ≤ b < 1. If one of the following is satisfied:

(i) T1, T2 satisfy condition (II),

(ii) T1 or T2 is hemicompact,
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then {xn} converges strongly to an element of F.

Using the same arguments as in the proof of Theorem 3.3, we obtain the fol-
lowing result for approximating a fixed point of a k-strictly pseudononspreading
multivalued mapping in R-trees.

Theorem 3.5. Let D be a nonempty closed convex subset of a complete R-tree X.
Let T : D → KC(D) be a k-strictly pseudononspreading multivalued mapping with
F (T ) 6= ∅. Suppose that T satisfies the gate condition. Let u be a key of T . For
x1 ∈ D, the sequence {xn} generated by

xn+1 = (1− αn)xn ⊕ αnzn for all n ∈ N,

where zn is the gate of u in Txn. Let {αn} be a sequence in [0, 1] such that 0 < a ≤
αn ≤ b < 1 − k. If either T satisfy condition (I) or T is hemicompact, then {xn}
converges strongly to an element of F (T ).

Proof. In Theorem 3.3, put T1 = T and T2 = I (identity mapping). Hence, we
obtain the desired result from Theorem 3.3. 2

Remark 3.6. Theorem 3.3 extends [16] to the case of two k-strictly pseudonon-
spreading multivalued mappings and our iteration process is different from the it-
eration process defined by Samanmit and Panyanak [16].
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[8] R. Esṕınola, W. A. Kirk, Fixed point theorems in R-trees with applications to graph
theory, Topology and its Applications, 153(2006), 1046-1055.

[9] W. A. Kirk, Hyperconvexity of R-trees, Fundamenta Mathematicae, 156(1)(1998),
67-72.

[10] W. A. Kirk, Fixed point theorems in CAT(0) spaces and R-trees, Fixed Point Theory
Appl., 2004(2004), 309-316.

[11] W. A. Kirk, Some recent results in metric fixed point theory, J. Fixed Point Theory
Appl., 2(2007), 195-207.

[12] J. T. Markin, Fixed points, selections and best approximation for multivalued map-
pings in R-trees, Nonlinear Anal., 67(2007), 2712-2716.

[13] S. B. Nadler Jr., Multi-valued contraction mappings, Pacific J. Math., 30(1969), 475-
488.

[14] M. O. Osilike and F. O. Isiogugu, Weak and strong convergence theorems for
nonspreading-type mappings in Hilbert spaces, Nonlinear Anal., 74(2011), 1814-1822.

[15] T. Puttasontiphot, Mann and Ishikawa iteration schemes for multivalued mappings
in CAT(0) spaces, Applied Mathematical Sciences, 4(61)(2010), 3005-3018.

[16] K. Samanmit and B. Panyanak, On multivalued nonexpansive mappings in R-trees,
Journal of Applied Mathematics, Volume 2012, Article ID 629149, 13 pages.

[17] C. Semple and M. Steel, Phylogenetics, Oxford Lecture Ser. Math. Appl., vol. 24,
Oxford Univ. Press, Oxford, 2003.

[18] N. Shahzad and H. Zegeye, On Mann and Ishikawa iteration schemes for multi-valued
maps in Banach spaces, Nonlinear Anal., 71(2009), 838-844.

[19] J. Tits, A Theorem of LieKolchin for Trees. Contributions to Algebra: A Collection
of Papers Dedicated to Ellis Kolchin, Academic Press, New York, 1977.

[20] K. Wlodarczyk, D. Klim and R. Plebaniak, Existence and uniqueness of endpoints
of closed set-valued asymptotic contractions in metric spaces, J. Math. Anal. Appl.,
328(2007), 46-57.


