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Abstract. In the present paper, by using the Fibonacci difference matrix, we introduce

the almost convergent sequence space ĉf . Also, we show that the spaces ĉf and ĉ are

linearly isomorphic. Further, we determine the β−dual of the space ĉf and characterize

some matrix classses on this space. Finally, Fibonacci core of a complex-valued sequence

has been introduced, and we prove some inclusion theorems related to this new type of

core.

1. Introduction

Let ω be the set of all complex sequences x = (xk)∞k=0 and c0, c and `∞ be the
sets of all null, convergent and bounded sequences, respectively. Also by bs and cs,
we denote the spaces of all bounded and convergent series, respectively. Through-
out this paper all infinite sequences and matrices are assumed to be indexed by
N = {0, 1, 2, ...}. For example, (xk)k∈N will be denoted simply as (xk). Also, for
simplicity in notation, the summation without limits runs from 0 to ∞.

Let X, Y be any two sequence spaces and A = (ank) be an infinite matrix of
real numbers ank, where n, k ∈ N. Then, we say that A defines a matrix mapping
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from X into Y , and we denote it by writing A : X → Y , if for every sequence
x = (xk) ∈ X the sequence Ax = ((Ax)n), the A−transform of x, is in Y , where

(1.1) (Ax)n =
∑

k

ankxk, (n ∈ N).

By (X : Y ), we denote the class of all matrices A such that A : X → Y . Thus,
A ∈ (X : Y ) if and only if the series on the right-hand side of (1.1) converges for
each n ∈ N and every x ∈ X, and we have Ax = {(Ax)n}n∈N ∈ Y for all x ∈ X. A
sequence x is said to be A− summable to α if Ax converges to α which is called as
the A−limit of x. If X and Y are equipped with the limits X − lim and Y − lim,
respectively, A ∈ (X : Y ) and Y − limn An(x) = X − limk xk for all x ∈ X, then we
say that A regularly maps X into Y and write A ∈ (X : Y )reg.

A matrix A = (ank) is called a triangle if ank = 0 for k > n and ann 6= 0 for all
n ∈ N. It is trivial that A(Bx) = (AB)x holds for the triangle matrices A, B and
a sequence x. Further, a triangle U uniquely has an inverse U−1 = V that is also a
triangle matrix. Then, x = U(V x) = V (Ux) holds for all x ∈ ω.

A linear functional B on `∞ is called a Banach limit if
(1) B ≥ 0, i.e. B(x) ≥ 0 for x ≥ 0 and B(e) = e, where e = (1, 1, 1, ...).
(2) B(Tx) = B(x) for all x ∈ `∞, where T is the shift operator, that is,

T (x0, x1, ...) = (x1, x2, ...).
The existence of Banach limits was proven by Banach [1] in his book. It follows

from the definition, that B(x) = limn→∞ xn for every x = (xn) ∈ c. A sequence
x ∈ `∞ is called almost convergent to the generalized limit α if all Banach limits
of x are α [2], and denoted by ĉ − lim xk = α. Let ĉ denote the set of all almost
convergent sequences. Lorentz [2] proved that

ĉ =



x = xk ∈ ω : ∃α ∈ C 3 lim

m→∞

m∑

j=0

xn+k

m + 1
= α uniformly in n



 .

It is known that ĉ is a Banach space with the norm [3]

‖x‖ĉ = sup
m,n∈N

∣∣∣∣∣∣

m∑

j=0

xn+k

m + 1

∣∣∣∣∣∣
.

The domain ĉA of an infinite matrix A in the almost convergent sequence space
ĉ is defined by

ĉA = {x = xk ∈ ω : Ax ∈ ĉ} .

In the literature, by using the some special triangular matrices, new almost conver-
gent sequence spaces have been defined by several authors. For example, the spaces
ĉRt , ĉC , ĉB(r,s), ĉB(r,s,t) have been studied in [4, 5, 6, 7], respectively, where Rt is
the Riesz mean, C is the Cesàro matrix of order one, and B(r, s) = {bnk(r, s)} and
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B(r, s, t) = {bnk(r, s, t)} are the generalized difference matrices respectively defined
by

bnk(r, s) =





r, k = n
s, k = n− 1
0, otherwise

and bnk(r, s, t) =





r, k = n
s, k = n− 1
t, k = n− 2
0, otherwise

for all k, n ∈ N. Recently, Kara and Elmaağaç [8], by using the u−difference
matrix, defined u−difference almost sequence space ĉu, where u−difference matrix
is the matrix Au = (au

nk) is defined by

au
nk =

{
(−1)n−kuk, n− 1 ≤ k ≤ n

0, 0 ≤ k < n− 1 or k > n

for all k, n ∈ N. Also, we refer the reader to [9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21] for a wide perspective on the concept of almost convergence and some
generalizations and relations with matrix methods.

Let x = (xk) be a sequence in C, the set of all complex numbers, and Rk be
the least convex closed region of complex plane containing xk, xk+1, xk+2, . . .. The
Knopp Core (or K− core) of x is defined by the intersection of all Rk (k=1,2,. . . ),
(see [22], pp.137). In [23], it is shown that

K− core(x) =
⋂

z∈C
Bx(z)

for any bounded sequence x, where Bx(z) =
{
w ∈ C : |w − z| ≤ lim supk |xk − z|}.

Let E be a subset of N. The natural density δ of E is defined by

δ(E) = lim
n

1
n
|{k ≤ n : k ∈ E}|

where |{k ≤ n : k ∈ E}| denotes the number of elements of E not exceeding
n. A sequence x = (xk) is said to be statistically convergent to a number l, if
δ({k : |xk − l| ≥ ε}) = 0 for every ε. In this case we write st − lim x = l, [24]. By
st we denote the space of all statistically convergent sequences.

In [25], the notion of the statistical core (or st − core) of a complex valued
sequence has been introduced by Fridy and Orhan and it is shown for a statistically
bounded sequence x that

st− core(x) =
⋂

z∈C
Cx(z),

where Cx(z) =
{
w ∈ C : |w − z| ≤ st− lim supk |xk − z|}. The core theorems have

been studied by many authors. For instance see [26, 27, 28, 29, 30] and the others.
The sequence (fn) of Fibonacci numbers defined by the linear recurrence equal-

ities
f0 = f1 = 1 and fn = fn−1 + fn−2 with n ≥ 2.
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Fibonacci numbers have many interesting properties and applications in arts, sci-
ences and architecture. For example, the ratio sequences of Fibonacci numbers
converges to the golden ratio which is important in sciences and arts. Also, some
basic properties of sequences of Fibonacci numbers [31] are given as follows:

lim
n→∞

fn+1

fn
=

1 +
√

5
2

= ϕ (Golden Ratio),

n∑

k=0

fk = fn+2 − 1 for each n ∈ N,

∑

k

1
fk

converges,

fn−1fn+1 − f2
n = (−1)n+1 for all n ≥ 1.

Recently, Kara [32] has defined the sequence space `p(F̂ ) as follows:

`p(F̂ ) =
{

x ∈ ω : F̂ x ∈ `p

}
, (1 ≤ p ≤ ∞),

where F̂ = (f̂nk) is the double band matrix defined by the sequence (fn) of Fibonacci
numbers as follows

f̂nk =





− fn+1
fn

, k = n− 1,
fn

fn+1
, k = n,

0 , 0 ≤ k < n− 1 or k > n

for all k, n ∈ N. Also, in [33], Kara et al. have characterized some classes of compact
operators on the spaces `p(F̂ ) and `∞(F̂ ), where 1 ≤ p < ∞. Furthermore, quite
recently, the sequence spaces λ(F̂ ) and µ(F̂ , p) studied by Başarır et al. [34], and
Kara and Demiriz [35], respectively, where λ ∈ {c0, c} and µ ∈ {c0, c, `∞}.

In this paper, we introduce new sequence space ĉf that consist of all sequences
whose F̂ -transforms in the space ĉ. Also, we show that ĉf is linearly isomorphic to
the space ĉ. Further, we compute the β-dual of the space ĉf and characterize the
classes of infinite matrices related to sequence space ĉf . Finally, we have defined
Fibonacci Core (F̂ − core) of a sequence and characterized some class of matrices
for which F̂ − core(Ax) ⊆ K − core(x) and F̂ − core(Ax) ⊆ stA − core(x) for all
x ∈ `∞.

2. The Sequence Space ĉf Derived by the Domain of the Matrix F̂

In this section, we define the sequnce space ĉf and give an isomorphism between
the spaces ĉf and ĉ respectively. Later, we determine the β−dual of the space ĉf .

We introduce the sequence space ĉf as the set of all sequence whose F̂− trans-
forms are in the space ĉ, that is
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ĉf =



x = xk ∈ ω : ∃α ∈ C 3 lim

m→∞

m∑

j=0

yn+j

m + 1
= α uniformly in n



 ,

where y = (yn) is the F̂ -transform of a sequence x = (xn), i.e.,

(2.1) yn = F̂n(x) =

{
x0 , n = 0,

fn

fn+1
xn − fn+1

fn
xn−1 , n ≥ 1 .

It is clear that the space ĉf can be redefined as

ĉf = ĉF̂ .

Now, we may give following theorem concerning the isomorphism between the
spaces ĉf and ĉ.

Theorem 2.1. The sequence space ĉf is linearly isomorphic to the space ĉ, that is,
ĉf ∼= ĉ.

Proof. To prove this, we should show the existence of a linear bijection between the
spaces ĉf and ĉ. Consider the transformation L defined, with the notation of (2.1)
from ĉf to ĉ by x 7−→ y = Lx = F̂ x. The linearity of L is clear. Further, it is trivial
that x = θ whenever Lx = θ and hence is injective.

Let us take any y = (yk) and consider the sequence x = (xk) using the inverse
F̂−1 defined by

(2.2) xk = F̂−1
k y =

k∑

j=0

f2
k+1

fjfj+1
yj

for all k ∈ N. Then, we have

fn

fn+1
xn − fn+1

fn
xn−1 =

fk

fk+1

k∑

j=0

f2
k+1

fjfj+1
yj − fk+1

fk

k−1∑

j=0

f2
k

fjfj+1
yj = yk

for all k ∈ N which leads us to the fact that

lim
m→∞

m∑

j=0

fn+j

fn+1+j
xn+j − fn+1+j

fn+j
xn−1+j

m + 1
= lim

m→∞
1

m + 1

m∑

j=0

yk+j uniformly in k

= ĉ− lim yk.
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This means that x = (xk) ∈ ĉf . Consequently, we see from here that L is
surjective. Hence, L is a linear bijection, which therefore says that the spaces ĉf

and ĉ are linearly isomorphic as was desired. 2

If a normed sequence space X contains a sequence (bn) with the property that
for every x ∈ X there is a unique sequence of scalars (αn) such that

lim
n→∞

‖x− (a0b0 + a1b1 + ... + anbn)‖ = 0

then (bn) is called a Schauder basis (or briefly basis) for X. The series
∑

αkbk

which has the sum x is then called the expansion of x with respect to (bn), and
written as x =

∑
αkbk [36].

Lemma 2.2.([6, Corollarry 3.3]) The Banach space ĉ has no Schauder basis.

Since the matrix F̂ is a triangle and the space ĉ has no Schauder basis by Lemma
2.2 , we have from [37, Remark 2.4]:

Corollary 2.3. The space ĉf has no Schauder basis.

Let X and Y be given sequence spaces. Then, the set S (X, Y ) defined by

S (X,Y ) = {z = (zk) ∈ ω : xz = (xkzk) ∈ Y for all x = (xk) ∈ X}
is called the multiplier space of the spaces X and Y . Then, the β−dual of a sequence
X, denoted by Xα, is defined by Xα = S (X, cs).

The following lemma is essential to compute β−dual of the space ĉf .

Lemma 2.4.([16]) A = (ank) ∈ (ĉ : c) if and only if there are αk, α ∈ C such that

(2.3) lim
n→∞

ank = αk for each k ∈ N,

(2.4) lim
n→∞

∑

k

ank = α,

(2.5) lim
n→∞

∑

k

|∆(ank − αk)| = 0,

(2.6) sup
n∈N

∑

k

|ank| < ∞,

where ∆(ank − αk) = (ank − αk)− (an,k+1 − αk+1) (n, k ∈ N).
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Theorem 2.5. Define the sets d1, d2, d3, d4 and d5 by

d1 =



a = (αk) ∈ ω : lim

n→∞

n∑

j=k

f2
j+1

fkfk+1
aj exists



 ,

d2 =



a = (αk) ∈ ω : lim

n→∞

n∑

k=0




n∑

j=k

f2
j+1

fkfk+1
aj


 exists



 ,

d3 =

{
a = (αk) ∈ ω : lim

n→∞

n∑

k=0

∣∣∣∣∣
∞∑

i=k+1

f2
i+1

fkfk+1
ai

∣∣∣∣∣ = 0

}
,

d4 =

{
a = (αk) ∈ ω : lim

n→∞

∞∑

k=n+1

∣∣∣∣∣
∞∑

i=k+1

f2
i+1

fkfk+1
ai

∣∣∣∣∣ = 0

}
,

and

d5 =



a = (αk) ∈ ω : sup

n∈N

n∑

k=0

∣∣∣∣∣∣

n∑

j=k

f2
j+1

fkfk+1
aj

∣∣∣∣∣∣
< ∞



 .

Then, {
ĉf

}β
= ∩5

i=1di.

Proof. Take any a = (αk) ∈ ω and consider the equality obtained with (2.2) that

(2.7)
n∑

k=0

akxk =
n∑

k=0

ak




n∑

j=0

f2
k+1

fjfj+1
yj


 =

n∑

k=0




n∑

j=k

f2
j+1

fkfk+1
aj


 yk = Dn(y),

for all n ∈ N, where D = (dnk) is defined by

dnk =





n∑
j=k

f2
j+1

fkfk+1
aj (0 ≤ k ≤ n)

0 (k > n)
; n, k ∈ N.

Then, one can easily see from (2.7) that ax = (αkxk) ∈ cs whenever x = (xk) ∈ ĉf

if and only if Dy ∈ c whenever y = (yk) ∈ ĉ. Therefore, we derive from Lemma 2.4
that ax = (αkxk) ∈ cs whenever x = (xk) ∈ ĉf if and only if a = (αk) ∈ ∩5

i=1di.
This means that

{
cf

}β = ∩5
i=1di, which concludes the proof. 2

3. Some Matrix Transformations Related to the Sequence Space ĉf

In the present section, we characterize the matrix transformations from ĉf into
any given sequence space X and from a given sequence space X into ĉf .

Throughout this section we shall write for brevity that
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ãnk =
∞∑

j=k

f2
j+1

fkfk+1
anj ,

ānk =
fn

fn+1
ank − fn+1

fn
an−1,k,

a (n, k) =
n∑

j=0

ajk

and

a (n, k,m) =
1

m + 1

m∑

j=0

an+j,k (m ∈ N)

for all k, n ∈ N. Also, since ĉf ∼= ĉ , it is trivial that the equivalance “x ∈ ĉf if and
only if y ∈ ĉ” holds.

Now, we give the following two theroems to determine matrix classes on the
space ĉf . To prove these theorems, we follow the similar way due to Başar and
Kirişçi [6].

Theorem 3.1. Suppose that the entries of the infinite matrices A = (ank) and
T = (tnk) are connected with the relation

(3.1) tnk = ãnk

for all k, n ∈ N and X be any given sequence space. Then, A ∈ (
ĉf : X

)
if and only

if {ank}k∈N ∈
{
ĉf

}β for all n ∈ N and T ∈ (ĉ : X).

Proof. Let X be any given sequence space. Assume that (3.1) holds for the matrices
A = (ank) and T = (tnk), and take into account that the spaces ĉf and ĉ are linearly
isomorphic.

Now, let A ∈ (
ĉf : X

)
and take y = (yk) ∈ ĉ. Then, T F̂ exist and {ank}k∈N ∈

∩5
i=1di which yields {tnk}k∈N ∈ `1 for each n ∈ N. Hence, Ty exist and thus

∑

k

tnkyk =
∑

k

ankxk for all n ∈ N

and we obtain from (3.1) that Ty = Ax, which leads us to consequence T ∈ (ĉ : Y ).
Conversely, let {ank}k∈N ∈

{
ĉf

}β for all n ∈ N and T ∈ (ĉ : X) hold, and take
x = (xk) ∈ ĉf . Then, Ax exists. Therefore, we obtain from the equality

m∑

k=0

ankxk =
m∑

k=0




m∑

j=k

f2
j+1

fkfk+1
anj


 yk ; for all n ∈ N

as m →∞ that Ty = Ax and this shows that A ∈ (
ĉf : X

)
. 2
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Theorem 3.2. Suppose that the entries of the infinite matrices A = (ank) and
R = (rnk) are connected with the relation rnk = ānk for all k, n ∈ N and X be given
sequence space. Then, A ∈ (

X : ĉf
)

if and only if R ∈ (X : ĉ).

Proof. Let x = (xk) ∈ X and consider the following equality

{
F̂ (Ax)

}
n

=
fn

fn+1
(Ax)n −

fn+1

fn
(Ax)n−1

=
fn

fn+1

∑

k

ankxk − fn+1

fn

∑

k

an−1,kxk

=
∑

k

(
fn

fn+1
ank − fn+1

fn
an−1,k

)
xk = (Rx)n

for all n ∈ N, which yields by to the generalized limit that Ax ∈ ĉf if and only if
Rx ∈ ĉ. This completes the proof. 2

Now, we give the following conditions:

(3.2) sup
n∈N

∑

k

|∆ank| < ∞,

(3.3) lim
k→∞

ank = 0 for each fixed n ∈ N,

(3.4) ĉ− lim ank = αk exists for each fixed k ∈ N,

(3.5) lim
m→∞

∑

k

|a (n, k,m)− αk| = 0 uniformly in n,

(3.6) ĉ− lim
∑

k

ank = α,

(3.7) lim
m→∞

∑

k

|∆[a (n, k,m)− αk]| = 0 uniformly in n,

(3.8) lim
q→∞

∑

k

1
q + 1

∣∣∣∣∣
q∑

i=0

∆[a (n + i, k)− αk]

∣∣∣∣∣ = 0 uniformly in n,
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(3.9) sup
n∈N

∑

k

|a (n, k)| < ∞,

(3.10)
∑

n

ank = αk for each fixed n ∈ N,

(3.11)
∑

n

∑

k

ank = α,

(3.12) lim
n→∞

∑

k

|∆[a (n, k)− αk]| = 0.

Prior to giving some results as an application of this idea, we give the following
basic lemma, which is the collection of the characterizations of matrix transforma-
tions related to almost convergence.

Lemma 3.3.([6]) Let A = (ank) be an infinite matrix. Then, the following state-
ments hold:

(i) A = (ank) ∈ (ĉ : `∞) if and only if (2.6) holds.
(ii) A = (ank) ∈ (`∞ : ĉ) if and only if (2.6), (3.4) and (3.5) hold.
(iii) A = (ank) ∈ (ĉ : ĉ) if and only if (2.6), (3.4), (3.6) and (3.7) hold.
(iv) A = (ank) ∈ (c : ĉ) if and only if (2.6), (3.4) and (3.6) hold.
(v) A = (ank) ∈ (bs : ĉ) if and only if (3.2), (3.3), (3.4) and (3.8) hold.
(vi) A = (ank) ∈ (cs : ĉ) if and only if (3.2) and (3.4) hold.
(vii) A = (ank) ∈ (ĉ : cs) if and only if (3.9)− (3.12) hold.

Then, by using Theorems 3.1 and 3.2 with Lemmas 2.4 and 3.3, we have the following
corollaries.

Corollary 3.4. The following statements hold:

(i) A = (ank) ∈ (
ĉf : `∞

)
if and only if {ank}k∈N ∈

{
ĉf

}β for all n ∈ N and
(2.6) hold with ãnk instead of ank.

(ii) A = (ank) ∈ (
ĉf : c

)
if and only if {ank}k∈N ∈

{
ĉf

}β for all n ∈ N and
(2.3)− (2.6) hold with ãnk instead of ank.

(iii) A = (ank) ∈ (
ĉf : ĉ

)
if and only if {ank}k∈N ∈

{
ĉf

}β for all n ∈ N and
(2.6), (3.4), (3.6) and (3.7) hold with ãnk instead of ank.

(iv) A = (ank) ∈ (
ĉf : bs

)
if and only if {ank}k∈N ∈

{
ĉf

}β for all n ∈ N and
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(3.9) holds.

(v) A = (ank) ∈ (
ĉf : cs

)
if and only if {ank}k∈N ∈

{
ĉf

}β for all n ∈ N and

(3.9)− (3.12) hold with ãnk instead of ank.

Corollary 3.5. The following statements hold:

(i) A = (ank) ∈ (
`∞ : ĉf

)
if and only if (2.6), (3.4) and (3.5) hold with ānk

instead of ank.

(ii) A = (ank) ∈ (
c : ĉf

)
if and only if (2.6), (3.4) and (3.6) hold with ānk

instead of ank.

(iii) A = (ank) ∈ (
ĉ : ĉf

)
if and only if (2.6), (3.4), (3.6) and (3.7) hold with

ānk instead of ank.

(iv) A = (ank) ∈ (
bs : ĉf

)
if and only if (3.2), (3.3), (3.4) and (3.8) hold with

ānk instead of ank.

(v) A = (ank) ∈ (
cs : ĉf

)
if and only if (3.2) and (3.4) hold with ānk instead of

ank.

4. Fibonacci Core

Using the convergence domain of the matrix F̂ = (fnk), the new sequence
spaces c0(F̂ ) and c(F̂ ) have been constructed and their some properties have been
investigated in [34]. In this section we will consider the sequences with complex
entries and by `∞(C) denote the space of all bounded complex valued sequences.

Following Knopp, a core theorem is characterized a class of matrices for which
the core of the transformed sequence is included by the core of the original sequence.
For example Knopp Core Theorem [22, p.138] states that K − core(Ax) ⊆ K −
core(x) for all real valued sequences x whenever A is a positive matrix in the class
(c : c)reg.

Here, we will define Fibonacci core (or F̂ -core) of a complex valued sequence
and characterize the class of matrices to yield F̂ − core(Ax) ⊆ K − core(x) and
F̂ − core(Ax) ⊆ st− core(x) for all x ∈ `∞(C).

Now, let us write

yn(x) = F̂n(x) =





f0

f1
x0 = x0, (n = 0),

fn

fn+1
xn − fn+1

fn
xn−1, (n ≥ 1),

where n ∈ N. Then, we can define F̂ − core of a complex sequence as follows:
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Definition 4.1. Let Hn be the least closed convex hull containing yn(x), yn+1(x),
yn+2(x), .... Then, F̂ − core of x is the intersection of all Hn, i.e.,

F̂ − core(x) =
∞⋂

n=1

Hn.

Note that, actually, we define F̂ −core of x by the K−core of the sequence (yn(x)).
Hence, we can construct the following theorem which is an analogue of K − core,
[23]:

Theorem 4.2. For any z ∈ C, let

Gx(z) =
{

ω ∈ C : |ω − z| ≤ lim sup
n

|yn(x)− z|
}

.

Then, for any x ∈ `∞,
F̂ − core(x) =

⋂

z∈C
Gx(z).

Now, we prove some lemmas which will be useful to the main results of this
section. To do these, we need to characterize the classes (c : c(F̂ ))reg and (st(A) ∩
`∞ : c(F̂ ))reg. For brevity, in what follows we write b̃nk in place of

fn

fn+1
bnk − fn+1

fn
bn−1,k; (n ≥ 1).

Lemma 4.3. B ∈ (`∞ : c(F̂ )) if and only if

(4.1) ‖B‖ = sup
n

∑

k

|b̃nk| < ∞,

(4.2) lim
n

b̃nk = αk for each k,

(4.3) lim
n

∑

k

|b̃nk − αk| = 0.

Lemma 4.4. B ∈ (c : c(F̂ ))reg if and only if (4.1) and (4.2) of the Lemma 4.3 hold
with αk = 0 for all k ∈ N and

(4.4) lim
n

∑

k

b̃nk = 1.
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Lemma 4.5. B ∈ (st(A) ∩ `∞ : c(F̂ ))reg if and only if B ∈ (c : c(F̂ ))reg and

(4.5) lim
n

∑

k∈E

|b̃nk| = 0

for every E ⊂ N with δA(E) = 0.

Proof. Because of c ⊂ st ∩ `∞, B ∈ (c : c(F̂ ))reg. Now, for any x ∈ `∞ and a set
E ⊂ N with δ(E) = 0, let us define the sequence z = (zk) by

zk =
{

xk, k ∈ E
0, k /∈ E.

Then, since z ∈ st0, Az ∈ c0(F̂ ), where c0(F̂ ) is the space of sequences which the
F̂− transforms of them in c0. Also, since

∑

k

b̃nkzk =
∑

k∈E

b̃nkxk,

the matrix D = (dnk) defined by dnk = b̃nk (k ∈ E) and dnk = 0 (k /∈ E) is in
the class (`∞ : c(F̂ )). Hence, the necessity of (4.5) follows from Lemma 4.3.

Conversely, let x ∈ st(A)∩ `∞ with stA− limx = l. Then, the set E defined by
E = {k : |xk− l| ≥ ε} has density zero and |xk− l| ≤ ε if k /∈ E. Now, we can write

(4.6)
∑

k

b̃nkxk =
∑

k

b̃nk(xk − l) + l
∑

k

b̃nk.

Since ∣∣∣∣∣
∑

k

b̃nk(xk − l)

∣∣∣∣∣ ≤ ‖x‖
∑

k∈E

|b̃nk|+ ε · ‖B‖,

letting n →∞ in (4.6) and using (4.4) with (4.5), we have

lim
n

∑

k

b̃nkxk = l.

This implies that B ∈ (st(A) ∩ `∞ : c(F̂ ))reg and the proof is completed. 2

Theorem 4.6. For any z ∈ C, let

Gx(z) =
{

ω ∈ C : |ω − z| ≤ lim sup
n

|yn(x)− z|
}

.

Then, for any x ∈ `∞,
F̂ − core(x) =

⋂

z∈C
Gx(z).
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Now, we may give some inclusion theorems. Firstly, we need a lemma.

Lemma 4.7.([38, Corollary 12]) Let A = (ank) be a matrix satisfying
∑

k |ank| < ∞
and limn ank = 0. Then, there exists an y ∈ `∞ with ‖y‖ ≤ 1 such that

lim sup
n

∑

k

ankyk = lim sup
n

∑

k

|ank|.

Theorem 4.8. Let B ∈ (c : c(F̂ ))reg. Then, F̂ − core(Bx) ⊆ K − core(x) for all
x ∈ `∞ if and only if

(4.7) lim
n

∑

k

|b̃nk| = 1.

Proof. Since B ∈ (c : c(F̂ ))reg, the matrix B̃ = (b̃nk) is satisfy the conditions of
Lemma 4.7. So, there exists a y ∈ `∞ with ‖y‖ ≤ 1 such that

{
ω ∈ C : |ω| ≤ lim sup

n

∑

k

b̃nkyk

}
=

{
ω ∈ C : |ω| ≤ lim sup

n

∑

k

|b̃nk|
}

.

On the other hand, since K− core(y) ⊆ B1(0), by the hypothesis
{

ω ∈ C : |ω| ≤ lim sup
n

∑

k

|b̃nk|
}
⊆ B1(0) = {ω ∈ C : |ω| ≤ 1}

which implies (4.7).

Conversely, let ω ∈ F̂ − core(Bx). Then, for any given z ∈ C, we can write

|ω − z| ≤ lim sup
n

|yn(Bx)− z|(4.8)

= lim sup
n

∣∣∣∣∣z −
∑

k

b̃nkxk

∣∣∣∣∣

≤ lim sup
n

∣∣∣∣∣
∑

k

b̃nk(z − xk)

∣∣∣∣∣ + lim sup
n

|z|
∣∣∣∣∣1−

∑

k

b̃nk

∣∣∣∣∣

= lim sup
n

∣∣∣∣∣
∑

k

b̃nk(z − xk)

∣∣∣∣∣ .

Now, let lim supk |xk−z| = l. Then, for any ε > 0, |xk−z| ≤ l+ε whenever k ≥ k0.
Hence, one can write that
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∣∣∣∣
∑

k

b̃nk(z − xk)
∣∣∣∣ =

∣∣∣∣∣∣
∑

k<k0

b̃nk(z − xk) +
∑

k≥k0

b̃nk(z − xk)

∣∣∣∣∣∣
(4.9)

≤ sup
k
|z − xk|

∑

k<k0

|b̃nk|+ (l + ε)
∑

k≥k0

|b̃nk|

≤ sup
k
|z − xk|

∑

k<k0

|b̃nk|+ (l + ε)
∑

k

|b̃nk|.

Therefore, applying lim supn under the light of the hypothesis and combining
(4.8) with (4.9), we have

|ω − z| ≤ lim sup
n

∣∣∣∣∣
∑

k

b̃nk(z − xk)

∣∣∣∣∣ ≤ l + ε

which means that ω ∈ K− core(x). This completes the proof. 2

Theorem 4.9. Let B ∈ (st(A)∩`∞ : c(F̂ ))reg. Then, F̂−core(Bx) ⊆ stA−core(x)
for all x ∈ `∞ if and only if (4.7) holds.

Proof. Since stA − core(x) ⊆ K− core(x) for any sequence x [39], the necessity of
the condition (4.7) follows from Theorem 4.8.

Conversely, take ω ∈ F̂ − core(Bx). Then, we can write again (4.8). Now;
if stA − lim sup |xk − z| = s, then for any ε > 0, the set E defined by E = {k :
|xk − z| > s + ε} has density zero, (see [39]). Now, we can write

∣∣∣∣
∑

k

b̃nk(z − xk)
∣∣∣∣ =

∣∣∣∣∣
∑

k∈E

b̃nk(z − xk) +
∑

k/∈E

b̃nk(z − xk)

∣∣∣∣∣

≤ sup
k
|z − xk|

∑

k∈E

|b̃nk|+ (s + ε)
∑

k/∈E

|b̃nk|

≤ sup
k
|z − xk|

∑

k∈E

|b̃nk|+ (s + ε)
∑

k

|b̃nk|.

Thus, applying the operator lim supn and using the condition (4.7) with (4.5) , we
get that

(4.10) lim sup
n

∣∣∣∣∣
∑

k

b̃nk(z − xk)

∣∣∣∣∣ ≤ s + ε.

Finally, combining (4.8) with (4.10), we have

|ω − z| ≤ stA − lim sup
k

|xk − z|
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which means that ω ∈ stA − core(x) and the proof is completed. 2

As a consequence of Theorem 4.9, we have

Corollary 4.10. Let B ∈ (st ∩ `∞ : c(F̂ ))reg. Then, F̂ − core(Bx) ⊆ st− core(x)
for all x ∈ `∞ if and only if (4.7) holds.
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[33] E. E. Kara, M. Başarır and M. Mursaleen, Compact operators on the Fibonacci dif-

ference sequence spaces `p(F̂ ) and `∞(F̂ ), 1st International Eurasian Conference on
Mathematical Sciences and Applications, Prishtine-Kosovo, September 3-7, 2012.
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[38] S. Simons, Banach limits, infinite matrices and sublinear functionals, J. Math. Anal.
Appl., 26(1969), 640-655.

[39] K. Demirci, A-statistical core of a sequence, Demonstratio Math., 33(2000), 43-51.


