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ABSTRACT. In the paper we discuss the value distribution of the product of the derivative
of a transcendental meromorphic function and a power of the function.

1. Introduction

W. K. Hayman [5] proved the following result.

Theorem A. ([5]) If n(> 3) is an integer and f is a transcendental meromorphic
function, then f™f' assumes all finite values, except possibly zero, infinitely often.

Hayman [7] also conjectured that Theorem A might be valid for n = 1 and
n = 2. E. Mues [12] settled the conjecture for n = 2 and the case n = 1 was settled
by W. Bergweiler and A. Eremenko [1] and by H. H. Chen and M. L. Fang [3].

In 1999 X. C. Pang and L. Zalcman [13] considered the general order derivative
of an entire function. They proved the following result.

Theorem B. ([13]) Let f be a transcendental entire function, all of whose zeros
have multiplicity at least k and let n be a positive integer. Then f™f*) assume
every nonzero finite value infinitely often.

Recently J. P. Wang [16] considered the meromorphic case and proved the fol-
lowing theorem.

Theorem C. ([16]) Let f be a transcendental meromorphic function all of whose ze-
ros have multiplicity at least t. Then for any positive integer k(> 2), Ff®) assumes
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every nonzero finite value infinitely often provided that t = k + 1 for 2 < k < 4,
t=>5 fork=5andt =6 for k> 6.

N. Steinmetz [15] proved that if f is a transcendental meromorphic function,
then f”f(*) assume every nonzero finite value infinitely often, where n(> 2) and k
are positive integers.

In 1994 Yik Man Chiang asked the question of value distribution of ff’ — a,
where a = a(z)(# 0,00) is a small function of f i.e., T(r,a) = S(r, f). In response
to this question W. Bergweiler [2] proved the following theorem.

Theorem D. ([2]) Let f be a transcendental meromorphic function of finite order
and a = a(z)(£ 0) be a polynomial. Then ff'" — a has infinitely many zeros.

In 2005 I. Lahiri and S. Dewan [10] observed that if a = bz™, n is a nonnegative
integer and b is a nonzero constant, then the order restriction on f can be withdrawn.
Their result is as follows.

Theorem E. ([10]) Let f be a transcendental meromorphic function. Then fPf' —
bz™ has infinitely many zeros, where b(# 0) is a constant and n(> 0), p(> 1) are
integers.

If one considers a small function, then following two results are worth mention-
ing, which follow from two inequalities proved by Q. D. Zhang [18].

Theorem F. Let [ be a transcendental meromorphic function with §(oo; f) > %.

Then ff" —a has infinitely many zeros, where a = a(z)(# 0,00) is a small function

of f.

Theorem G. Let [ be a transcendental meromorphic function with 6(oco; f) +
25(0; f) > 1. Then ff' — a has infinitely many zeros, where a = a(z)(# 0,00)
is a small function of f.

K. W. Yu [17] treated the small function case without imposing any restriction
on f. However he had to consider a small function and its negative as a pair of
targets. He proved the following theorem.

Theorem H. ([17]) If a = a(2)(# 0,00) is a small function of a transcendental
meromorphic function f, then at least one of ff' + a and ff" — a has infinitely
many zeros.

In 2003 I. Lahiri and S. Dewan [9] considered the general order derivative and
proved the following result.

Theorem I. (cf. Corollary 1 [9]) Let f be a transcendental meromorphic function
and k be a positive integer. Suppose that Fy = ff*) —a and Fy = ff*) + a, where

a = a(z)(#£0,0) is a small function of f. Then ©(0; F1) + O(0; F) < 2 — ﬁ
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The problem of value distribution of f?f*) — a remains open, where f is a
transcendental meromorphic function, a = a(z)(# 0,00) is a small function of f
and p, k are positive integers. In the paper we deal with this problem.

We respectively denote by Ny (r,0; f) and Nyy(r,0; f) the counting function
and the reduced counting function of those zeros of f which have multiplicities less
than or equal to k, where k is a positive integer.

For standard definitions and notations of the value distribution theory we refer
the reader to [6].

We now state the main result of the paper.

Theorem 1. Let f be a transcendental meromorphic function and o = a(z)(#
0,00) be a small function of f such that the zero-pole sets of f and « are disjoint.
Suppose that the zeros of f have multiplicity at least t, where t = [%] +1ifp>2,
t=k+1ifp=1andl <k <4 andt = min{k,6} if p=1and k > 5. If
F = fPf®) — o, then one of the following holds:

. p k1,
F)<1- 1— > 9
0 00 F) <1 - 22
k
ii ) <1l— ——— 4 =1 1<k<4;
(i) ©(0; F) < 1) if p=1and 1 <k <4
i) 00 F) <1 L=HDEHD =L k> 5

at(k + 1) (k +2)

2. Lemmas

In this section we state two necessary lemmas. Let f be a transcendental mero-
morphic function and n, p be positive integers. A dlfferentlal polynomial P of f is

defined by P(:) = 3° u(: >,where¢k<>—ak<>n<f<ﬂ>< )%, ax(z) £ 0, Sy

are nonnegative integers and T'(r, ay,) = S(r, f).
If we suppose only m(r,ax) = S(r, f), then P(z) is called a quasi-differential
polynomial.

The quantities d(P) = nax {Z Sk;} and d(P) = 1r<r}€1£1 {Z Sk;j} are respec-

tively called the degree and lower degree of P(z). If, in partlcular, d(P) = d(P),
then P(z) is called homogeneous.

Lemma 1. ([8]) Let f be a transcendental meromorphic function and P = P(z)
be a nonconstant differential polynomial in f with d(P) > 1. Suppose that Q =

max. {Z JSkj}t. Then

T(r,f) < 21

— 1 _
>~ WN(T,O,JC)—FWN(T,LP)+S(T,f)
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Lemma 2. (p.39 [11]) Let f be a nonconstant meromorphic function and Q1, Q2
be quasi-differential polynomials in f with Q2 £ 0. Let n be a positive integer and

Q1 = Q2. If d(Q2) < n, then m(r,Q1) = S(r, f).

3. Proof of Theorem 1

First we suppose that p > 2. We put P = 2 f f(®). Then d(P) = d(P) =p+1
and Q = k. So by Lemma 1 we get

T0f) < N0 + N1 P) 4 S )
k+1 1
< TT(T, )+ EN(T, 1, P)+ S(r, f)
and so
(31) p(1= 2T ) < N 1iP) + 50, ).
We note that {cf. [4], [14]}
(3.2) T(r, )+ S(r, f) <CT(r,F)+ S(r, F)
and
(3.3) T(r,F)<(k+p+ 1T, f)+ S f),

where C' is a nonzero constant.
From (3.2) and (3.3) we see that S(r, f) and S(r, F) are mutually interchange-
able. So from (3.1) and (3.3) we get

P (7k+1

T(r,F) < N(r,0; F F).
(= ST F) < N 0:F) + S F)

k+1
J4 (17+

k+p+1 pt
Now we suppose that p = 1. Let us put

This implies ©(0; F) < 1 — ).

(3.4) F=ffk _q

and

(3.5) 0= f’?“ + flhn) _ f(m%'.
Then

(3.6) fa= (OL/ _ ﬂl)



Value Distribution of the Product of a Meromorphic Derivative 339

Let % — % = 0. Then on integration we get F' = cc, where ¢(# 0) is a constant.

Hence we get from (3.4)
(3.7) ff% =1+ c)a.

Since ff*) # 0, we have 1 + ¢ # 0. From (3.7) we get

(3.8) N(r,0; f) < N(r,0;a) = S(r, f).
Also from (3.7) we obtain — L d o m(r. %) = S(r. ). Thi
rom (3. in - =-—"—"—an +) = 8(r, f). Thi
so fro we obta T Uxoa 7 and so m(r, 7 T s
implies
(3.9) m(r,0; f) = S(r, f).
From (3.8), (3.9) and the first fundamental theorem we get T(r, f) = S(r, f), a
contradiction. Therefore %, - % £ 0. So from (3.6) we get by Lemma 2
(3.10) m(r,a) = S(r, f).

Let z; be a pole of f with multiplicity ¢(> 2). Then 2; is a simple pole of
(% — I as a(z1) # 0,00 and so z; is a zero of a with multiplicity ¢ — 1. Hence
a F

(311) N(Z(Taoo;f) < 2N(T‘,0;(1),

where N((r, 00; f) denotes the counting function of multiple poles of f.

Let 25 be a zero of f with multiplicity ¢(> k+1). Then 25 is a zero of F' +a’ =
1 4 £+ with multiplicity at least 2 — (k + 1).

Since F+a = ff*), we see that 2, is a zero of F + a with multiplicity 2¢ — k.

From (3.6) we get fa = (F'+a’)— w So 25 is a zero of fa with multiplicity
at least 2¢ — (k + 1). Therefore 2z is not a pole of a.

Also from (3.6) we see that a simple pole of f is not a pole of a. Hence the
poles of a are contributed by the zeros of F' and by zeros of f with multiplicities
less than or equal to k£ and the poles of a. Therefore

(3.12) N(r,00;a) = N(r,00;a) < Nyy(r,0; f) + N(r,0; F) + S(r, f).
By (3.10) and (3.12) we get

(3.13) T(r,a) < Niy(r,0; f) + N(r,0; F) + S(r, f).
From (3.6) we obtain

m(r, f) m(r,0;a) + S(r, f)
(3.14) = T(r,a) — N(r,0;a) + S(r, f).

IN
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Let zy be a simple pole of f. Then from (3.6) we see that a(zg) # 0,00. Now
in some neighbourhood of zy we get

C1

(3.15) f(z) = p—— + o+ O(z — 20),
(3.16) a(z) = a(z) + a'(20)(z — 20) + O(z — 2)?
and
(3.17) a(z2) = alz) + o/ (20) (2 — 20) + O(z — 20)?,
where ¢; # 0 and «a(z) # 0, co.

Differentiating (3.15) we get

, —1)9 41

(3.18) FO(z) = % +0(1) for j=1,2,3,....

From (3.5) and (3.6) we have
(3.19) afa=af f® +af fEHD 4 f2fRa — o/ frH),

Now by (3.15) — (3.19) we get

{alzo) + ' (20)(2 — 20) + O(z — 20)2}{;7120 +co+O(z — 20)}
{a(z0) +a'(20)(z — 20) + O(z — 20)*}

= {alz0) + &/ (20)(z — 20) + Oz — 20) H{— 5 + O(1)}

(z — 20)

- kcl ! , 9
((z—l)zo)’f]ill +O0(1)} + {a(zo) + &' (20)(z — 2z0) + O(z — 20)°}
C1 _ kJrlcl !
(2 o+ 06— (L2 o)

C1 — kcl .
HE e+ 0 - P LS o)

{a(z0) +a'(20)(2 — 20) + O(z — 20)*} — {a/(20) + O(z — 20)}
(=1)Ferk!

C1

2 — —_— 1)}.
(3.20) {Ziz0 +co+O(z zo)}{(zizo)kﬂ +0(1)}
Equating the coefficients of ! and ! of both sides of (3.20)
auatine R R R |

we respectively get

(3.21) cra(z0) = a(z0)(k +2)
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and

(3.22) o _ o)

From (3.15) we have

(3.23) L= + 940z - ).

Also from (3.6) we obtain

= {2+ @+ 00— a)Halo) +a/(20)(z — 20) + O(= = )%}
B214) = aao){——+ 2+ L oGz,
z—z2 < a(z)

From (3.21) — (3.24) we get in some neighbourhood of zg

o F 2a/(z0) ff (k+1)d'(20)

(3:25) a(— — %) =alz)(k+2){ o) m} +O0(x = 20).
Let
(3.26) he (el _F_@kE3)a (k4 (k4 2)d

f F a (k+3)a
First we suppose that h(z) = 0. Then on integration we get

(3.27) FOA2)(k43) o (k1) (+2) 4 (2h+3) (543) pht3

where A(# 0) is a constant.
Let z3 be a zero of f with multiplicity p(> 1). Then from (3.27) we see that z3
is a pole of a with multiplicity ¢ such that (k+2)(k+3)p = (k+1)(k + 2)q and so

3
q= TLP > 1. This is impossible because from (3.5) we see that a zero of f is at

most a simple pole of a. Hence f has no zero. Since a zero of F' is a possible pole
of a and f has no zero, we have from (3.27) N(r,0; F) = S(r, f). Therefore from
(3.13) we get

(3.28) T(r,a) = S(r, f).
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Now by the first fundamental theorem we get

N(r,0;f®) = N(r,0;*—

= N(r,=——)+5(rf)
= EkN(r,00; )+ 5(r, f)
(3.29) = N(r,00; f®) = N(r,o0; f) + S(r, f).

1 1 / (k+1) F'
From (3.5) we obtain RG] = (J; + ffw - F) and so in view of (3.28)

we get m(r,0; f*)) = S(r, f). Hence by the first fundamental theorem we get
(3.30) T(r, f*®) = N(r,0; f ) + S(r, ).
From (3.29) and (3.30) we see that
(3.31) N(r,00; f) = S(r, f).
So from (3.14), (3.28) and (3.31) we get
T(r, f) < T(r,a) — N(r,0;a) + S(r, f) = S(r, /),

a contradiction.

Let h(z) # 0. Then from (3.25) we see that h(zg) = 0. Hence

Nyy(r,o0; f) < N(r,0:h)
< T(r,h)+ O(1)
= N(r,h)+m(r,h) + O(1)
(3.32) = N(r,h) + S(r, f).
The possible poles of h are (i) zeros and poles of «, (ii) zeros and poles of a,
(iii) zeros and poles of f and (iv) zeros and poles of F. We further note that

(I) A pole of F is either a pole of f or a pole of « or of both;

(IT) A zero of f with multiplicity > k + 2 is a zero of a. Also a zero of f with
multiplicity k£ + 1 is a nonzero regular point of a;

(IIT) A simple pole of f is a zero of h and a multiple pole of f is a zero of «;

(IV) A zero of F, which is not a zero or a pole of a, is a pole of a.
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Let z4 be a zero of f with multiplicity k. Then F(zy) # 0,00 and f*)(z,) #
0, 00. Then from (3.5) we see that z4 is a simple pole of a. Therefore we have

(3.33) N(r,h) < N(r,0;a) + N(r,00;a) + Np_1)(r,0; f) + Npp1(r, 05 f) + S(r, f),

where Ny 1(r,0; f) denotes the reduced counting function of those zeros of f which
have multiplicity exactly equal to k + 1.
Now considering (3.11), (3.13), (3.14), (3.32) and (3.33) we get

T(r,f) = m(r, f)+ Ni(r,o0; f) + Na(r, 005 f)

T(r,a) — N(r,0;a) + 2N (r,0;a) + N(r,0;a)

+N(r,00;a) + Nj_1)(r, 05 f) + N1 (r,0; f) + S(r, f)

AT (r,a) + Nj—_1)(r,0; f) + Ngya (,0; f) + S(r, f)

ANy (1,05 f) + Np_1)(r, 05 f) + Nigr (1,03 f) + 4N (r,0; F) + S(r, f).

IN

<
(3.34) <

Let 1 < k < 4. then from (3.34) and (3.3), for p = 1, we get by the hypothesis

1 _
< -  (1-— <
T(r, f) < k+1T(r,f)+4N(T,O,F)+S(T,F) and so k]:_2(1 k+1)T(r,F) <
AN B F). This implies <l -—=1— — .
(r,0; F)+ S(r, F) is implies O(0; F') < NI )

Next let k£ > 5. Then from (3.34) and (3.3), for p = 1, we get by the hypothesis

T(r, f) < %T(r, )+ %HT(T, f) +4N(r,0; F) + S(r, f) and so (1— 4.

k42 t
%_H)T(r, F) <4N(r,0; F) 4+ S(r, F). Therefore ©(0; F) <1 — (t=dk+1)—t

4k+1)(k+2) "
This proves the theorem. O
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