Value Distribution of the Product of a Meromorphic Derivative and a Power of the Function

Indrajit Lahiri* and Rajib Mukherjee
Department of Mathematics, University of Kalyani, West Bengal 741235, India Department of Mathematics, Krishnanath College, Baharampur, West Bengal 742101, India
e-mail: ilahiri@hotmail.com and rajib_raju786@yahoo.com
Abstract. In the paper we discuss the value distribution of the product of the derivative of a transcendental meromorphic function and a power of the function.

1. Introduction

W. K. Hayman [5] proved the following result.

Theorem A. ([5]) If $n(\geq 3)$ is an integer and f is a transcendental meromorphic function, then $f^{n} f^{\prime}$ assumes all finite values, except possibly zero, infinitely often.

Hayman [7] also conjectured that Theorem A might be valid for $n=1$ and $n=2$. E. Mues [12] settled the conjecture for $n=2$ and the case $n=1$ was settled by W. Bergweiler and A. Eremenko [1] and by H. H. Chen and M. L. Fang [3].

In 1999 X. C. Pang and L. Zalcman [13] considered the general order derivative of an entire function. They proved the following result.

Theorem B. ([13]) Let f be a transcendental entire function, all of whose zeros have multiplicity at least k and let n be a positive integer. Then $f^{n} f^{(k)}$ assume every nonzero finite value infinitely often.

Recently J. P. Wang [16] considered the meromorphic case and proved the following theorem.

Theorem C. ([16]) Let f be a transcendental meromorphic function all of whose zeros have multiplicity at least t. Then for any positive integer $k(\geq 2), f f^{(k)}$ assumes

[^0]every nonzero finite value infinitely often provided that $t=k+1$ for $2 \leq k \leq 4$, $t=5$ for $k=5$ and $t=6$ for $k \geq 6$.
N. Steinmetz [15] proved that if f is a transcendental meromorphic function, then $f^{n} f^{(k)}$ assume every nonzero finite value infinitely often, where $n(\geq 2)$ and k are positive integers.

In 1994 Yik Man Chiang asked the question of value distribution of $f f^{\prime}-a$, where $a=a(z)(\not \equiv 0, \infty)$ is a small function of f i.e., $T(r, a)=S(r, f)$. In response to this question W. Bergweiler [2] proved the following theorem.

Theorem D. ([2]) Let f be a transcendental meromorphic function of finite order and $a=a(z)(\not \equiv 0)$ be a polynomial. Then $f f^{\prime}-a$ has infinitely many zeros.

In 2005 I. Lahiri and S. Dewan [10] observed that if $a=b z^{n}, n$ is a nonnegative integer and b is a nonzero constant, then the order restriction on f can be withdrawn. Their result is as follows.

Theorem E. ([10]) Let f be a transcendental meromorphic function. Then $f^{p} f^{\prime}-$ $b z^{n}$ has infinitely many zeros, where $b(\neq 0)$ is a constant and $n(\geq 0), p(\geq 1)$ are integers.

If one considers a small function, then following two results are worth mentioning, which follow from two inequalities proved by Q. D. Zhang [18].

Theorem F. Let f be a transcendental meromorphic function with $\delta(\infty ; f)>\frac{7}{9}$. Then $f f^{\prime}-a$ has infinitely many zeros, where $a=a(z)(\not \equiv 0, \infty)$ is a small function of f.

Theorem G. Let f be a transcendental meromorphic function with $\delta(\infty ; f)+$ $2 \delta(0 ; f)>1$. Then $f f^{\prime}-a$ has infinitely many zeros, where $a=a(z)(\not \equiv 0, \infty)$ is a small function of f.
K. W. Yu [17] treated the small function case without imposing any restriction on f. However he had to consider a small function and its negative as a pair of targets. He proved the following theorem.

Theorem H. ([17]) If $a=a(z)(\not \equiv 0, \infty)$ is a small function of a transcendental meromorphic function f, then at least one of $f f^{\prime}+a$ and $f f^{\prime}-a$ has infinitely many zeros.

In 2003 I. Lahiri and S. Dewan [9] considered the general order derivative and proved the following result.

Theorem I. (cf. Corollary 1 [9]) Let f be a transcendental meromorphic function and k be a positive integer. Suppose that $F_{1}=f f^{(k)}-a$ and $F_{2}=f f^{(k)}+a$, where $a=a(z)(\not \equiv 0, \infty)$ is a small function of f. Then $\Theta\left(0 ; F_{1}\right)+\Theta\left(0 ; F_{2}\right) \leq 2-\frac{2}{(2+k)^{2}}$.

The problem of value distribution of $f^{p} f^{(k)}-a$ remains open, where f is a transcendental meromorphic function, $a=a(z)(\not \equiv 0, \infty)$ is a small function of f and p, k are positive integers. In the paper we deal with this problem.

We respectively denote by $N_{k)}(r, 0 ; f)$ and $\bar{N}_{k)}(r, 0 ; f)$ the counting function and the reduced counting function of those zeros of f which have multiplicities less than or equal to k, where k is a positive integer.

For standard definitions and notations of the value distribution theory we refer the reader to [6].

We now state the main result of the paper.
Theorem 1. Let f be a transcendental meromorphic function and $\alpha=\alpha(z)(\not \equiv$ $0, \infty)$ be a small function of f such that the zero-pole sets of f and α are disjoint. Suppose that the zeros of f have multiplicity at least t, where $t=\left[\frac{k+1}{p}\right]+1$ if $p \geq 2$, $t=k+1$ if $p=1$ and $1 \leq k \leq 4$ and $t=\min \{k, 6\}$ if $p=1$ and $k \geq 5$. If $F=f^{p} f^{(k)}-\alpha$, then one of the following holds:
(i) $\Theta(0 ; F) \leq 1-\frac{p}{k+p+1}\left(1-\frac{k+1}{p t}\right)$ if $p \geq 2$;
(ii) $\Theta(0 ; F) \leq 1-\frac{k}{4 t(k+2)}$ if $p=1$ and $1 \leq k \leq 4$;
(iii) $\Theta(0 ; F) \leq 1-\frac{(t-4)(k+1)-t}{4 t(k+1)(k+2)}$ if $p=1$ and $k \geq 5$.

2. Lemmas

In this section we state two necessary lemmas. Let f be a transcendental meromorphic function and n, p be positive integers. A differential polynomial P of f is defined by $P(z)=\sum_{k=1}^{n} \phi_{k}(z)$, where $\phi_{k}(z)=\alpha_{k}(z) \prod_{j=0}^{p}\left(f^{(j)}(z)\right)^{S_{k j}}, \alpha_{k}(z) \not \equiv 0, S_{k j}$ are nonnegative integers and $T\left(r, \alpha_{k}\right)=S(r, f)$.

If we suppose only $m\left(r, \alpha_{k}\right)=S(r, f)$, then $P(z)$ is called a quasi-differential polynomial.

The quantities $\bar{d}(P)=\max _{1 \leq k \leq n}\left\{\sum_{j=0}^{p} S_{k j}\right\}$ and $\underline{d}(P)=\min _{1 \leq k \leq n}\left\{\sum_{j=0}^{p} S_{k j}\right\}$ are respectively called the degree and lower degree of $P(z)$. If, in particular, $\bar{d}(P)=\underline{d}(P)$, then $P(z)$ is called homogeneous.

Lemma 1. ([8]) Let f be a transcendental meromorphic function and $P=P(z)$ be a nonconstant differential polynomial in f with $\underline{d}(P)>1$. Suppose that $Q=$ $\max _{1 \leq k \leq n}\left\{\sum_{j=1}^{p} j S_{k j}\right\}$. Then

$$
T(r, f) \leq \frac{Q+1}{\underline{d}(P)-1} \bar{N}(r, 0 ; f)+\frac{1}{\underline{d}(P)-1} \bar{N}(r, 1 ; P)+S(r, f)
$$

Lemma 2. (p. 39 [11]) Let f be a nonconstant meromorphic function and Q_{1}, Q_{2} be quasi-differential polynomials in f with $Q_{2} \not \equiv 0$. Let n be a positive integer and $f^{n} Q_{1}=Q_{2}$. If $\bar{d}\left(Q_{2}\right) \leq n$, then $m\left(r, Q_{1}\right)=S(r, f)$.

3. Proof of Theorem 1

First we suppose that $p \geq 2$. We put $P=\frac{1}{\alpha} f^{p} f^{(k)}$. Then $\underline{d}(P)=\bar{d}(P)=p+1$ and $Q=k$. So by Lemma 1 we get

$$
\begin{aligned}
T(r, f) & \leq \frac{k+1}{p} \bar{N}(r, 0 ; f)+\frac{1}{p} \bar{N}(r, 1 ; P)+S(r, f) \\
& \leq \frac{k+1}{p t} T(r, f)+\frac{1}{p} \bar{N}(r, 1 ; P)+S(r, f)
\end{aligned}
$$

and so

$$
\begin{equation*}
p\left(1-\frac{k+1}{p t}\right) T(r, f) \leq \bar{N}(r, 1 ; P)+S(r, f) . \tag{3.1}
\end{equation*}
$$

We note that $\{$ cf. [4], [14] $\}$

$$
\begin{equation*}
T(r, f)+S(r, f) \leq C T(r, F)+S(r, F) \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
T(r, F) \leq(k+p+1) T(r, f)+S(r, f) \tag{3.3}
\end{equation*}
$$

where C is a nonzero constant.
From (3.2) and (3.3) we see that $S(r, f)$ and $S(r, F)$ are mutually interchangeable. So from (3.1) and (3.3) we get

$$
\frac{p}{k+p+1}\left(1-\frac{k+1}{p t}\right) T(r, F) \leq \bar{N}(r, 0 ; F)+S(r, F) .
$$

This implies $\Theta(0 ; F) \leq 1-\frac{p}{k+p+1}\left(1-\frac{k+1}{p t}\right)$.
Now we suppose that $p=1$. Let us put

$$
\begin{equation*}
F=f f^{(k)}-\alpha \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
a=\frac{f^{\prime} f^{(k)}}{f}+f^{(k+1)}-f^{(k)} \frac{F^{\prime}}{F} \tag{3.5}
\end{equation*}
$$

Then

$$
\begin{equation*}
f a=\alpha\left(\frac{\alpha^{\prime}}{\alpha}-\frac{F^{\prime}}{F}\right) \tag{3.6}
\end{equation*}
$$

Let $\frac{\alpha^{\prime}}{\alpha}-\frac{F^{\prime}}{F} \equiv 0$. Then on integration we get $F=c \alpha$, where $c(\neq 0)$ is a constant. Hence we get from (3.4)

$$
\begin{equation*}
f f^{(k)}=(1+c) \alpha \tag{3.7}
\end{equation*}
$$

Since $f f^{(k)} \not \equiv 0$, we have $1+c \neq 0$. From (3.7) we get

$$
\begin{equation*}
N(r, 0 ; f) \leq N(r, 0 ; \alpha)=S(r, f) \tag{3.8}
\end{equation*}
$$

Also from (3.7) we obtain $\frac{1}{f^{2}}=\frac{1}{(1+c) \alpha} \frac{f^{(k)}}{f}$ and so $m\left(r, \frac{1}{f^{2}}\right)=S(r, f)$. This implies

$$
\begin{equation*}
m(r, 0 ; f)=S(r, f) \tag{3.9}
\end{equation*}
$$

From (3.8), (3.9) and the first fundamental theorem we get $T(r, f)=S(r, f)$, a contradiction. Therefore $\frac{\alpha^{\prime}}{\alpha}-\frac{F^{\prime}}{F} \not \equiv 0$. So from (3.6) we get by Lemma 2

$$
\begin{equation*}
m(r, a)=S(r, f) \tag{3.10}
\end{equation*}
$$

Let z_{1} be a pole of f with multiplicity $q(\geq 2)$. Then z_{1} is a simple pole of $\alpha\left(\frac{\alpha^{\prime}}{\alpha}-\frac{F^{\prime}}{F}\right)$ as $\alpha\left(z_{1}\right) \neq 0, \infty$ and so z_{1} is a zero of a with multiplicity $q-1$. Hence

$$
\begin{equation*}
N_{(2}(r, \infty ; f) \leq 2 N(r, 0 ; a) \tag{3.11}
\end{equation*}
$$

where $N_{(2}(r, \infty ; f)$ denotes the counting function of multiple poles of f.
Let z_{2} be a zero of f with multiplicity $q(\geq k+1)$. Then z_{2} is a zero of $F^{\prime}+\alpha^{\prime}=$ $f^{\prime} f^{(k)}+f f^{(k+1)}$ with multiplicity at least $2 q-(k+1)$.

Since $F+\alpha=f f^{(k)}$, we see that z_{2} is a zero of $F+\alpha$ with multiplicity $2 q-k$.
From (3.6) we get $f a=\left(F^{\prime}+\alpha^{\prime}\right)-\frac{F^{\prime}(F+\alpha)}{F}$. So z_{2} is a zero of $f a$ with multiplicity at least $2 q-(k+1)$. Therefore z_{2} is not a pole of a.

Also from (3.6) we see that a simple pole of f is not a pole of a. Hence the poles of a are contributed by the zeros of F and by zeros of f with multiplicities less than or equal to k and the poles of α. Therefore

$$
\begin{equation*}
N(r, \infty ; a)=\bar{N}(r, \infty ; a) \leq \bar{N}_{k)}(r, 0 ; f)+\bar{N}(r, 0 ; F)+S(r, f) \tag{3.12}
\end{equation*}
$$

By (3.10) and (3.12) we get

$$
\begin{equation*}
T(r, a) \leq \bar{N}_{k)}(r, 0 ; f)+\bar{N}(r, 0 ; F)+S(r, f) \tag{3.13}
\end{equation*}
$$

From (3.6) we obtain

$$
\begin{align*}
m(r, f) & \leq m(r, 0 ; a)+S(r, f) \\
& =T(r, a)-N(r, 0 ; a)+S(r, f) \tag{3.14}
\end{align*}
$$

Let z_{0} be a simple pole of f. Then from (3.6) we see that $a\left(z_{0}\right) \neq 0, \infty$. Now in some neighbourhood of z_{0} we get

$$
\begin{equation*}
a(z)=a\left(z_{0}\right)+a^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)+O\left(z-z_{0}\right)^{2} \tag{3.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha(z)=\alpha\left(z_{0}\right)+\alpha^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)+O\left(z-z_{0}\right)^{2} \tag{3.17}
\end{equation*}
$$

where $c_{1} \neq 0$ and $\alpha\left(z_{0}\right) \neq 0, \infty$.
Differentiating (3.15) we get

$$
\begin{equation*}
f^{(j)}(z)=\frac{(-1)^{j} j!c_{1}}{\left(z-z_{0}\right)^{j+1}}+O(1) \text { for } j=1,2,3, \ldots \tag{3.18}
\end{equation*}
$$

From (3.5) and (3.6) we have

$$
\begin{equation*}
\alpha f a=\alpha f^{\prime} f^{(k)}+\alpha f f^{(k+1)}+f^{2} f^{(k)} a-\alpha^{\prime} f f^{(k)} \tag{3.19}
\end{equation*}
$$

Now by (3.15) - (3.19) we get

$$
\begin{align*}
& \left\{\alpha\left(z_{0}\right)+\alpha^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)+O\left(z-z_{0}\right)^{2}\right\}\left\{\frac{c_{1}}{z-z_{0}}+c_{0}+O\left(z-z_{0}\right)\right\} \\
& \left\{a\left(z_{0}\right)+a^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)+O\left(z-z_{0}\right)^{2}\right\} \\
= & \left\{\alpha\left(z_{0}\right)+\alpha^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)+O\left(z-z_{0}\right)\right\}\left\{\frac{-c_{1}}{\left(z-z_{0}\right)^{2}}+O(1)\right\} \\
& \left\{\frac{(-1)^{k} c_{1} k!}{\left(z-z_{0}\right)^{k+1}}+O(1)\right\}+\left\{\alpha\left(z_{0}\right)+\alpha^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)+O\left(z-z_{0}\right)^{2}\right\} \\
& \left\{\frac{c_{1}}{z-z_{0}}+c_{0}+O\left(z-z_{0}\right)\right\}\left\{\frac{(-1)^{k+1} c_{1}(k+1)!}{\left(z-z_{0}\right)^{k+2}}+O(1)\right\} \\
& +\left\{\frac{c_{1}}{z-z_{0}}+c_{0}+O\left(z-z_{0}\right)^{2}\right\}^{2}\left\{\frac{(-1)^{k} c_{1} k!}{\left(z-z_{0}\right)^{k+1}}+O(1)\right\} \\
& \left\{a\left(z_{0}\right)+a^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)+O\left(z-z_{0}\right)^{2}\right\}-\left\{\alpha^{\prime}\left(z_{0}\right)+O\left(z-z_{0}\right)\right\} \\
& \left\{\frac{c_{1}}{z-z_{0}}+c_{0}+O\left(z-z_{0}\right)\right\}\left\{\frac{(-1)^{k} c_{1} k!}{\left(z-z_{0}\right)^{k+1}}+O(1)\right\} . \tag{3.20}
\end{align*}
$$

Equating the coefficients of $\frac{1}{\left(z-z_{0}\right)^{k+3}}$ and $\frac{1}{\left(z-z_{0}\right)^{k+2}}$ of both sides of (3.20) we respectively get

$$
\begin{equation*}
c_{1} a\left(z_{0}\right)=\alpha\left(z_{0}\right)(k+2) \tag{3.21}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{c_{0}}{c_{1}}=\frac{\alpha^{\prime}\left(z_{0}\right)}{\alpha\left(z_{0}\right)}-\frac{(k+2) a^{\prime}\left(z_{0}\right)}{(k+3) a\left(z_{0}\right)} \tag{3.22}
\end{equation*}
$$

From (3.15) we have

$$
\begin{equation*}
\frac{f^{\prime}}{f}=\frac{-1}{z-z_{0}}+\frac{c_{0}}{c_{1}}+O\left(z-z_{0}\right) \tag{3.23}
\end{equation*}
$$

Also from (3.6) we obtain
$\alpha\left(\frac{\alpha^{\prime}}{\alpha}-\frac{F^{\prime}}{F}\right)=f a$

$$
\begin{aligned}
& =\left\{\frac{c_{1}}{z-z_{0}}+c_{0}+O\left(z-z_{0}\right)\right\}\left\{a\left(z_{0}\right)+a^{\prime}\left(z_{0}\right)\left(z-z_{0}\right)+O\left(z-z_{0}\right)^{2}\right\} \\
& =c_{1} a\left(z_{0}\right)\left\{\frac{1}{z-z_{0}}+\frac{c_{0}}{c_{1}}+\frac{a^{\prime}\left(z_{0}\right)}{a\left(z_{0}\right)}\right\}+O\left(z-z_{0}\right)
\end{aligned}
$$

From (3.21) - (3.24) we get in some neighbourhood of z_{0}

$$
\begin{equation*}
\alpha\left(\frac{\alpha^{\prime}}{\alpha}-\frac{F^{\prime}}{F}\right)=\alpha\left(z_{0}\right)(k+2)\left\{\frac{2 \alpha^{\prime}\left(z_{0}\right)}{\alpha\left(z_{0}\right)}-\frac{f^{\prime}}{f}-\frac{(k+1) a^{\prime}\left(z_{0}\right)}{(k+3) a\left(z_{0}\right)}\right\}+O\left(z-z_{0}\right) \tag{3.25}
\end{equation*}
$$

Let

$$
\begin{equation*}
h=(k+2) \frac{f^{\prime}}{f}-\frac{F^{\prime}}{F}-\frac{(2 k+3) \alpha^{\prime}}{\alpha}+\frac{(k+1)(k+2) a^{\prime}}{(k+3) a} \tag{3.26}
\end{equation*}
$$

First we suppose that $h(z) \equiv 0$. Then on integration we get

$$
\begin{equation*}
f^{(k+2)(k+3)} a^{(k+1)(k+2)}=A \alpha^{(2 k+3)(k+3)} F^{k+3}, \tag{3.27}
\end{equation*}
$$

where $A(\neq 0)$ is a constant.
Let z_{3} be a zero of f with multiplicity $p(\geq 1)$. Then from (3.27) we see that z_{3} is a pole of a with multiplicity q such that $(k+2)(k+3) p=(k+1)(k+2) q$ and so $q=\frac{k+3}{k+1} p>1$. This is impossible because from (3.5) we see that a zero of f is at most a simple pole of a. Hence f has no zero. Since a zero of F is a possible pole of a and f has no zero, we have from (3.27) $\bar{N}(r, 0 ; F)=S(r, f)$. Therefore from (3.13) we get

$$
\begin{equation*}
T(r, a)=S(r, f) \tag{3.28}
\end{equation*}
$$

Now by the first fundamental theorem we get

$$
\begin{align*}
N\left(r, 0 ; f^{(k)}\right) & =N\left(r, 0 ; \frac{f^{(k)}}{f}\right) \\
& \leq T\left(r, \frac{f^{(k)}}{f}\right)+O(1) \\
& =N\left(r, \frac{f^{(k)}}{f}\right)+S(r, f) \\
& =k \bar{N}(r, \infty ; f)+S(r, f) \\
& =N\left(r, \infty ; f^{(k)}\right)-N(r, \infty ; f)+S(r, f) . \tag{3.29}
\end{align*}
$$

From (3.5) we obtain $\frac{1}{f^{(k)}}=\frac{1}{a}\left(\frac{f^{\prime}}{f}+\frac{f^{(k+1)}}{f^{(k)}}-\frac{F^{\prime}}{F}\right)$ and so in view of (3.28) we get $m\left(r, 0 ; f^{(k)}\right)=S(r, f)$. Hence by the first fundamental theorem we get

$$
\begin{equation*}
T\left(r, f^{(k)}\right)=N\left(r, 0 ; f^{(k)}\right)+S(r, f) \tag{3.30}
\end{equation*}
$$

From (3.29) and (3.30) we see that

$$
\begin{equation*}
N(r, \infty ; f)=S(r, f) \tag{3.31}
\end{equation*}
$$

So from (3.14), (3.28) and (3.31) we get

$$
T(r, f) \leq T(r, a)-N(r, 0 ; a)+S(r, f)=S(r, f)
$$

a contradiction.
Let $h(z) \not \equiv 0$. Then from (3.25) we see that $h\left(z_{0}\right)=0$. Hence

$$
\begin{align*}
N_{1)}(r, \infty ; f) & \leq N(r, 0 ; h) \\
& \leq T(r, h)+O(1) \\
& =N(r, h)+m(r, h)+O(1) \\
& =N(r, h)+S(r, f) . \tag{3.32}
\end{align*}
$$

The possible poles of h are (i) zeros and poles of α, (ii) zeros and poles of a, (iii) zeros and poles of f and (iv) zeros and poles of F. We further note that
(I) A pole of F is either a pole of f or a pole of α or of both;
(II) A zero of f with multiplicity $\geq k+2$ is a zero of a. Also a zero of f with multiplicity $k+1$ is a nonzero regular point of a;
(III) A simple pole of f is a zero of h and a multiple pole of f is a zero of a;
(IV) A zero of F, which is not a zero or a pole of α, is a pole of a.

Let z_{4} be a zero of f with multiplicity k. Then $F\left(z_{4}\right) \neq 0, \infty$ and $f^{(k)}\left(z_{4}\right) \neq$ $0, \infty$. Then from (3.5) we see that z_{4} is a simple pole of a. Therefore we have
(3.33) $N(r, h) \leq \bar{N}(r, 0 ; a)+\bar{N}(r, \infty ; a)+\bar{N}_{k-1)}(r, 0 ; f)+\bar{N}_{k+1}(r, 0 ; f)+S(r, f)$,
where $\bar{N}_{k+1}(r, 0 ; f)$ denotes the reduced counting function of those zeros of f which have multiplicity exactly equal to $k+1$.

Now considering (3.11), (3.13), (3.14), (3.32) and (3.33) we get

$$
\begin{aligned}
T(r, f)= & m(r, f)+N_{1)}(r, \infty ; f)+N_{(2}(r, \infty ; f) \\
\leq & T(r, a)-N(r, 0 ; a)+2 N(r, 0 ; a)+\bar{N}(r, 0 ; a) \\
& +\bar{N}(r, \infty ; a)+\bar{N}_{k-1)}(r, 0 ; f)+\bar{N}_{k+1}(r, 0 ; f)+S(r, f) \\
\leq & 4 T(r, a)+\bar{N}_{k-1)}(r, 0 ; f)+\bar{N}_{k+1}(r, 0 ; f)+S(r, f) \\
(3.34) \leq & 4 \bar{N}_{k)}(r, 0 ; f)+\bar{N}_{k-1)}(r, 0 ; f)+\bar{N}_{k+1}(r, 0 ; f)+4 \bar{N}(r, 0 ; F)+S(r, f) .
\end{aligned}
$$

Let $1 \leq k \leq 4$. then from (3.34) and (3.3), for $p=1$, we get by the hypothesis $T(r, f) \leq \frac{1}{k+1} T(r, f)+4 \bar{N}(r, 0 ; F)+S(r, F)$ and so $\frac{1}{k+2}\left(1-\frac{1}{k+1}\right) T(r, F) \leq$ $4 \bar{N}(r, 0 ; F)+S(r, F)$. This implies $\Theta(0 ; F) \leq 1-\frac{k}{4(k+1)(k+2)}=1-\frac{k}{4 t(k+2)}$.

Next let $k \geq 5$. Then from (3.34) and (3.3), for $p=1$, we get by the hypothesis $T(r, f) \leq \frac{4}{t} T(r, f)+\frac{1}{k+1} T(r, f)+4 \bar{N}(r, 0 ; F)+S(r, f)$ and so $\frac{1}{k+2}\left(1-\frac{4}{t}-\right.$ $\left.\frac{1}{k+1}\right) T(r, F) \leq 4 \bar{N}(r, 0 ; F)+S(r, F)$. Therefore $\Theta(0 ; F) \leq 1-\frac{(t-4)(k+1)-t}{4 t(k+1)(k+2)}$. This proves the theorem.

References

[1] W. Bergweiler and A. Eremenko, On the singularities of the inverse to a meromorphic function of finite order, Rev. Mat. Iberoamericana, 11(1995), 355-373.
[2] W. Bergweiler, On the product of a meromorphic function and its derivative, Bull. Hong Kong Math. Soc., 1(1997), 97-101.
[3] H. H. Chen and M. L. Fang, The value distribution of $f^{n} f^{\prime}$, Sci. China Ser. A, 38(1995), 789-798.
[4] W. Doeringer, Exceptional values of differential polynomials, Pacific J. Math., 98(1982), 55-62.
[5] W. K. Hayman, Picard values of meromorphic functions and their derivatives, Ann. of Math., 70(1959), 9-12.
[6] W. K. Hayman, Meromorphic Functions, The Clarendon Press, Oxford (1964).
[7] W. K. Hayman, Research Problems in Function Theory, The Athlone Press, University of London, London (1967).
[8] J. D. Hinchliffe, On a result of Chuang related to Hayman's alternative, Computational Methods Function Theory (CMFT), 2(1)(2002), 293-297.
[9] I. Lahiri and S. Dewan, Value distribution of the product of a meromorphic function and its derivative, Kodai Math. J., 26(1)(2003), 95-100.
[10] I. Lahiri and S. Dewan, Value distribution of meromorphic derivatives, Kyungpook Math. J., 45(2005), 339-348.
[11] I. Laine, Nevanlinna Theory and Complex Differential Equations, Walter de Gruyter, Berline, New York (1993).
[12] E. Mues, Über ein Problem von Hayman, Math. Z., 164(1979), 239-259.
[13] X. C. Pang and L. Zalcman, On theorems of Hayman and Clunie, New Zealand J. Math., 28(1999), 71-75.
[14] A. P. Singh, On order of homogeneous differential polynomials, Indian J. Pure Appl. Math., 16(1985), 791-795.
[15] N. Steinmetz, Über die Nullstellen von Differentialpolynomen, Math. Z., 176(1981), 255-264.
[16] J. P. Wang, On the value distribution of $f f^{(k)}$, Kyungpook Math. J., 46(2006), 169180.
[17] K. W. Yu, A note on the product of meromorphic functions and its derivatives, Kodai Math. J., 24(2001), 339-343.
[18] Q. D. Zhang, The value distribution of $\phi(z) f(z) f^{\prime}(z)$, Acta Math. Sinica, 37(1994), 91-98.

[^0]: * Corresponding Author.

 Received June 10, 2013; revised September 13, 2013; accepted September 17, 2013.
 2010 Mathematics Subject Classification: 30D35.
 Key words and phrases: Meromorphic function, derivative, value distribution.

