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Abstract. In the paper we discuss the value distribution of the product of the derivative

of a transcendental meromorphic function and a power of the function.

1. Introduction

W. K. Hayman [5] proved the following result.

Theorem A. ([5]) If n(≥ 3) is an integer and f is a transcendental meromorphic
function, then fnf ′ assumes all finite values, except possibly zero, infinitely often.

Hayman [7] also conjectured that Theorem A might be valid for n = 1 and
n = 2. E. Mues [12] settled the conjecture for n = 2 and the case n = 1 was settled
by W. Bergweiler and A. Eremenko [1] and by H. H. Chen and M. L. Fang [3].

In 1999 X. C. Pang and L. Zalcman [13] considered the general order derivative
of an entire function. They proved the following result.

Theorem B. ([13]) Let f be a transcendental entire function, all of whose zeros
have multiplicity at least k and let n be a positive integer. Then fnf (k) assume
every nonzero finite value infinitely often.

Recently J. P. Wang [16] considered the meromorphic case and proved the fol-
lowing theorem.

Theorem C. ([16]) Let f be a transcendental meromorphic function all of whose ze-
ros have multiplicity at least t. Then for any positive integer k(≥ 2), ff (k) assumes
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every nonzero finite value infinitely often provided that t = k + 1 for 2 ≤ k ≤ 4,
t = 5 for k = 5 and t = 6 for k ≥ 6.

N. Steinmetz [15] proved that if f is a transcendental meromorphic function,
then fnf (k) assume every nonzero finite value infinitely often, where n(≥ 2) and k
are positive integers.

In 1994 Yik Man Chiang asked the question of value distribution of ff ′ − a,
where a = a(z)( 6≡ 0,∞) is a small function of f i.e., T (r, a) = S(r, f). In response
to this question W. Bergweiler [2] proved the following theorem.

Theorem D. ([2]) Let f be a transcendental meromorphic function of finite order
and a = a(z)(6≡ 0) be a polynomial. Then ff ′ − a has infinitely many zeros.

In 2005 I. Lahiri and S. Dewan [10] observed that if a = bzn, n is a nonnegative
integer and b is a nonzero constant, then the order restriction on f can be withdrawn.
Their result is as follows.

Theorem E. ([10]) Let f be a transcendental meromorphic function. Then fpf ′−
bzn has infinitely many zeros, where b( 6= 0) is a constant and n(≥ 0), p(≥ 1) are
integers.

If one considers a small function, then following two results are worth mention-
ing, which follow from two inequalities proved by Q. D. Zhang [18].

Theorem F. Let f be a transcendental meromorphic function with δ(∞; f) > 7
9 .

Then ff ′− a has infinitely many zeros, where a = a(z)( 6≡ 0,∞) is a small function
of f .

Theorem G. Let f be a transcendental meromorphic function with δ(∞; f) +
2δ(0; f) > 1. Then ff ′ − a has infinitely many zeros, where a = a(z)(6≡ 0,∞)
is a small function of f .

K. W. Yu [17] treated the small function case without imposing any restriction
on f . However he had to consider a small function and its negative as a pair of
targets. He proved the following theorem.

Theorem H. ([17]) If a = a(z)( 6≡ 0,∞) is a small function of a transcendental
meromorphic function f , then at least one of ff ′ + a and ff ′ − a has infinitely
many zeros.

In 2003 I. Lahiri and S. Dewan [9] considered the general order derivative and
proved the following result.

Theorem I. (cf. Corollary 1 [9]) Let f be a transcendental meromorphic function
and k be a positive integer. Suppose that F1 = ff (k)− a and F2 = ff (k) + a, where
a = a(z)( 6≡ 0,∞) is a small function of f . Then Θ(0; F1) + Θ(0; F2) ≤ 2− 2

(2+k)2 .
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The problem of value distribution of fpf (k) − a remains open, where f is a
transcendental meromorphic function, a = a(z)( 6≡ 0,∞) is a small function of f
and p, k are positive integers. In the paper we deal with this problem.

We respectively denote by Nk)(r, 0; f) and Nk)(r, 0; f) the counting function
and the reduced counting function of those zeros of f which have multiplicities less
than or equal to k, where k is a positive integer.

For standard definitions and notations of the value distribution theory we refer
the reader to [6].

We now state the main result of the paper.

Theorem 1. Let f be a transcendental meromorphic function and α = α(z)( 6≡
0,∞) be a small function of f such that the zero-pole sets of f and α are disjoint.
Suppose that the zeros of f have multiplicity at least t, where t = [k+1

p ]+ 1 if p ≥ 2,
t = k + 1 if p = 1 and 1 ≤ k ≤ 4 and t = min{k, 6} if p = 1 and k ≥ 5. If
F = fpf (k) − α, then one of the following holds:

(i) Θ(0; F ) ≤ 1− p

k + p + 1
(1− k + 1

pt
) if p ≥ 2;

(ii) Θ(0; F ) ≤ 1− k

4t(k + 2)
if p = 1 and 1 ≤ k ≤ 4;

(iii) Θ(0; F ) ≤ 1− (t− 4)(k + 1)− t

4t(k + 1)(k + 2)
if p = 1 and k ≥ 5.

2. Lemmas

In this section we state two necessary lemmas. Let f be a transcendental mero-
morphic function and n, p be positive integers. A differential polynomial P of f is

defined by P (z) =
n∑

k=1

φk(z), where φk(z) = αk(z)
p∏

j=0

(f (j)(z))Skj , αk(z) 6≡ 0, Skj

are nonnegative integers and T (r, αk) = S(r, f).
If we suppose only m(r, αk) = S(r, f), then P (z) is called a quasi-differential

polynomial.

The quantities d(P ) = max
1≤k≤n

{
p∑

j=0

Skj} and d(P ) = min
1≤k≤n

{
p∑

j=0

Skj} are respec-

tively called the degree and lower degree of P (z). If, in particular, d(P ) = d(P ),
then P (z) is called homogeneous.

Lemma 1. ([8]) Let f be a transcendental meromorphic function and P = P (z)
be a nonconstant differential polynomial in f with d(P ) > 1. Suppose that Q =

max
1≤k≤n

{
p∑

j=1

jSkj}. Then

T (r, f) ≤ Q + 1
d(P )− 1

N(r, 0; f) +
1

d(P )− 1
N(r, 1; P ) + S(r, f).
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Lemma 2. (p.39 [11]) Let f be a nonconstant meromorphic function and Q1, Q2

be quasi-differential polynomials in f with Q2 6≡ 0. Let n be a positive integer and
fnQ1 = Q2. If d(Q2) ≤ n, then m(r,Q1) = S(r, f).

3. Proof of Theorem 1

First we suppose that p ≥ 2. We put P = 1
αfpf (k). Then d(P ) = d(P ) = p + 1

and Q = k. So by Lemma 1 we get

T (r, f) ≤ k + 1
p

N(r, 0; f) +
1
p
N(r, 1;P ) + S(r, f)

≤ k + 1
pt

T (r, f) +
1
p
N(r, 1;P ) + S(r, f)

and so

(3.1) p(1− k + 1
pt

)T (r, f) ≤ N(r, 1; P ) + S(r, f).

We note that {cf. [4], [14]}
(3.2) T (r, f) + S(r, f) ≤ CT (r, F ) + S(r, F )

and

(3.3) T (r, F ) ≤ (k + p + 1)T (r, f) + S(r, f),

where C is a nonzero constant.
From (3.2) and (3.3) we see that S(r, f) and S(r, F ) are mutually interchange-

able. So from (3.1) and (3.3) we get

p

k + p + 1
(1− k + 1

pt
)T (r, F ) ≤ N(r, 0; F ) + S(r, F ).

This implies Θ(0; F ) ≤ 1− p

k + p + 1
(1− k + 1

pt
).

Now we suppose that p = 1. Let us put

(3.4) F = ff (k) − α

and

(3.5) a =
f ′f (k)

f
+ f (k+1) − f (k) F

′

F
.

Then

(3.6) fa = α(
α′

α
− F ′

F
).
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Let α′
α − F ′

F ≡ 0. Then on integration we get F = cα, where c( 6= 0) is a constant.
Hence we get from (3.4)

(3.7) ff (k) = (1 + c)α.

Since ff (k) 6≡ 0, we have 1 + c 6= 0. From (3.7) we get

(3.8) N(r, 0; f) ≤ N(r, 0;α) = S(r, f).

Also from (3.7) we obtain
1
f2

=
1

(1 + c)α
f (k)

f
and so m(r, 1

f2 ) = S(r, f). This

implies

(3.9) m(r, 0; f) = S(r, f).

From (3.8), (3.9) and the first fundamental theorem we get T (r, f) = S(r, f), a
contradiction. Therefore α′

α − F ′
F 6≡ 0. So from (3.6) we get by Lemma 2

(3.10) m(r, a) = S(r, f).

Let z1 be a pole of f with multiplicity q(≥ 2). Then z1 is a simple pole of
α(α′

α − F ′
F ) as α(z1) 6= 0,∞ and so z1 is a zero of a with multiplicity q − 1. Hence

(3.11) N(2(r,∞; f) ≤ 2N(r, 0; a),

where N(2(r,∞; f) denotes the counting function of multiple poles of f .
Let z2 be a zero of f with multiplicity q(≥ k+1). Then z2 is a zero of F ′+α′ =

f ′f (k) + ff (k+1) with multiplicity at least 2q − (k + 1).
Since F + α = ff (k), we see that z2 is a zero of F + α with multiplicity 2q− k.
From (3.6) we get fa = (F ′+α′)−F ′(F+α)

F . So z2 is a zero of fa with multiplicity
at least 2q − (k + 1). Therefore z2 is not a pole of a.

Also from (3.6) we see that a simple pole of f is not a pole of a. Hence the
poles of a are contributed by the zeros of F and by zeros of f with multiplicities
less than or equal to k and the poles of α. Therefore

(3.12) N(r,∞; a) = N(r,∞; a) ≤ Nk)(r, 0; f) + N(r, 0;F ) + S(r, f).

By (3.10) and (3.12) we get

(3.13) T (r, a) ≤ Nk)(r, 0; f) + N(r, 0; F ) + S(r, f).

From (3.6) we obtain

m(r, f) ≤ m(r, 0; a) + S(r, f)
= T (r, a)−N(r, 0; a) + S(r, f).(3.14)
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Let z0 be a simple pole of f . Then from (3.6) we see that a(z0) 6= 0,∞. Now
in some neighbourhood of z0 we get

(3.15) f(z) =
c1

z − z0
+ c0 + O(z − z0),

(3.16) a(z) = a(z0) + a′(z0)(z − z0) + O(z − z0)2

and

(3.17) α(z) = α(z0) + α′(z0)(z − z0) + O(z − z0)2,

where c1 6= 0 and α(z0) 6= 0,∞.
Differentiating (3.15) we get

(3.18) f (j)(z) =
(−1)jj!c1

(z − z0)j+1
+ O(1) for j = 1, 2, 3, . . . .

From (3.5) and (3.6) we have

(3.19) αfa = αf ′f (k) + αff (k+1) + f2f (k)a− α′ff (k).

Now by (3.15) – (3.19) we get

{α(z0) + α′(z0)(z − z0) + O(z − z0)2}{ c1

z − z0
+ c0 + O(z − z0)}

{a(z0) + a′(z0)(z − z0) + O(z − z0)2}
= {α(z0) + α′(z0)(z − z0) + O(z − z0)}{ −c1

(z − z0)2
+ O(1)}

{ (−1)kc1k!
(z − z0)k+1

+ O(1)}+ {α(z0) + α′(z0)(z − z0) + O(z − z0)2}

{ c1

z − z0
+ c0 + O(z − z0)}{ (−1)k+1c1(k + 1)!

(z − z0)k+2
+ O(1)}

+{ c1

z − z0
+ c0 + O(z − z0)2}2{ (−1)kc1k!

(z − z0)k+1
+ O(1)}

{a(z0) + a′(z0)(z − z0) + O(z − z0)2} − {α′(z0) + O(z − z0)}

{ c1

z − z0
+ c0 + O(z − z0)}{ (−1)kc1k!

(z − z0)k+1
+ O(1)}.(3.20)

Equating the coefficients of
1

(z − z0)k+3
and

1
(z − z0)k+2

of both sides of (3.20)

we respectively get

(3.21) c1a(z0) = α(z0)(k + 2)
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and

(3.22)
c0

c1
=

α′(z0)
α(z0)

− (k + 2)a′(z0)
(k + 3)a(z0)

.

From (3.15) we have

(3.23)
f ′

f
=

−1
z − z0

+
c0

c1
+ O(z − z0).

Also from (3.6) we obtain

α(
α′

α
− F ′

F
) = fa

= { c1

z − z0
+ c0 + O(z − z0)}{a(z0) + a′(z0)(z − z0) + O(z − z0)2}

= c1a(z0){ 1
z − z0

+
c0

c1
+

a′(z0)
a(z0)

}+ O(z − z0).(3.24)

From (3.21) – (3.24) we get in some neighbourhood of z0

(3.25) α(
α′

α
− F ′

F
) = α(z0)(k + 2){2α′(z0)

α(z0)
− f ′

f
− (k + 1)a′(z0)

(k + 3)a(z0)
}+ O(z − z0).

Let

(3.26) h = (k + 2)
f ′

f
− F ′

F
− (2k + 3)α′

α
+

(k + 1)(k + 2)a′

(k + 3)a
.

First we suppose that h(z) ≡ 0. Then on integration we get

(3.27) f (k+2)(k+3)a(k+1)(k+2) = Aα(2k+3)(k+3)F k+3,

where A( 6= 0) is a constant.
Let z3 be a zero of f with multiplicity p(≥ 1). Then from (3.27) we see that z3

is a pole of a with multiplicity q such that (k + 2)(k + 3)p = (k + 1)(k + 2)q and so

q =
k + 3
k + 1

p > 1. This is impossible because from (3.5) we see that a zero of f is at

most a simple pole of a. Hence f has no zero. Since a zero of F is a possible pole
of a and f has no zero, we have from (3.27) N(r, 0;F ) = S(r, f). Therefore from
(3.13) we get

(3.28) T (r, a) = S(r, f).



342 Indrajit Lahiri and Rajib Mukherjee

Now by the first fundamental theorem we get

N(r, 0; f (k)) = N(r, 0;
f (k)

f
)

≤ T (r,
f (k)

f
) + O(1)

= N(r,
f (k)

f
) + S(r, f)

= kN(r,∞; f) + S(r, f)
= N(r,∞; f (k))−N(r,∞; f) + S(r, f).(3.29)

From (3.5) we obtain
1

f (k)
=

1
a

(
f ′

f
+

f (k+1)

f (k)
− F ′

F

)
and so in view of (3.28)

we get m(r, 0; f (k)) = S(r, f). Hence by the first fundamental theorem we get

(3.30) T (r, f (k)) = N(r, 0; f (k)) + S(r, f).

From (3.29) and (3.30) we see that

(3.31) N(r,∞; f) = S(r, f).

So from (3.14), (3.28) and (3.31) we get

T (r, f) ≤ T (r, a)−N(r, 0; a) + S(r, f) = S(r, f),

a contradiction.
Let h(z) 6≡ 0. Then from (3.25) we see that h(z0) = 0. Hence

N1)(r,∞; f) ≤ N(r, 0; h)
≤ T (r, h) + O(1)
= N(r, h) + m(r, h) + O(1)
= N(r, h) + S(r, f).(3.32)

The possible poles of h are (i) zeros and poles of α, (ii) zeros and poles of a,
(iii) zeros and poles of f and (iv) zeros and poles of F . We further note that

(I) A pole of F is either a pole of f or a pole of α or of both;

(II) A zero of f with multiplicity ≥ k + 2 is a zero of a. Also a zero of f with
multiplicity k + 1 is a nonzero regular point of a;

(III) A simple pole of f is a zero of h and a multiple pole of f is a zero of a;

(IV) A zero of F , which is not a zero or a pole of α, is a pole of a.



Value Distribution of the Product of a Meromorphic Derivative 343

Let z4 be a zero of f with multiplicity k. Then F (z4) 6= 0,∞ and f (k)(z4) 6=
0,∞. Then from (3.5) we see that z4 is a simple pole of a. Therefore we have

(3.33) N(r, h) ≤ N(r, 0; a) + N(r,∞; a) + Nk−1)(r, 0; f) + Nk+1(r, 0; f) + S(r, f),

where Nk+1(r, 0; f) denotes the reduced counting function of those zeros of f which
have multiplicity exactly equal to k + 1.

Now considering (3.11), (3.13), (3.14), (3.32) and (3.33) we get

T (r, f) = m(r, f) + N1)(r,∞; f) + N(2(r,∞; f)

≤ T (r, a)−N(r, 0; a) + 2N(r, 0; a) + N(r, 0; a)
+N(r,∞; a) + Nk−1)(r, 0; f) + Nk+1(r, 0; f) + S(r, f)

≤ 4T (r, a) + Nk−1)(r, 0; f) + Nk+1(r, 0; f) + S(r, f)

≤ 4Nk)(r, 0; f) + Nk−1)(r, 0; f) + Nk+1(r, 0; f) + 4N(r, 0; F ) + S(r, f).(3.34)

Let 1 ≤ k ≤ 4. then from (3.34) and (3.3), for p = 1, we get by the hypothesis

T (r, f) ≤ 1
k + 1

T (r, f) + 4N(r, 0;F ) + S(r, F ) and so
1

k + 2
(1 − 1

k + 1
)T (r, F ) ≤

4N(r, 0; F ) + S(r, F ). This implies Θ(0; F ) ≤ 1− k

4(k + 1)(k + 2)
= 1− k

4t(k + 2)
.

Next let k ≥ 5. Then from (3.34) and (3.3), for p = 1, we get by the hypothesis

T (r, f) ≤ 4
t
T (r, f) +

1
k + 1

T (r, f) + 4N(r, 0; F ) + S(r, f) and so
1

k + 2
(1 − 4

t
−

1
k + 1

)T (r, F ) ≤ 4N(r, 0; F ) + S(r, F ). Therefore Θ(0; F ) ≤ 1− (t− 4)(k + 1)− t

4t(k + 1)(k + 2)
.

This proves the theorem. 2
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[15] N. Steinmetz, Über die Nullstellen von Differentialpolynomen, Math. Z., 176(1981),
255-264.

[16] J. P. Wang, On the value distribution of ff (k), Kyungpook Math. J., 46(2006), 169-
180.

[17] K. W. Yu, A note on the product of meromorphic functions and its derivatives, Kodai
Math. J., 24(2001), 339-343.

[18] Q. D. Zhang, The value distribution of φ(z)f(z)f ′(z), Acta Math. Sinica, 37(1994),
91-98.


