Certain Subclass of p-Valent Meromorphic Functions Associated with Linear Operator

A. O. Mostafa, M. K. Aouf, A. Shamandy and Eman Ahmed Adwan*

Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
e-mail: adelaeg254@yahoo.com, mkaouf127@yahoo.com, shamandy16@hotmail.com and eman.a2009@yahoo.com

Abstract. In this paper, we introduce a class of p-valent meromorphic functions associated with linear operator and derive several interesting results of this class.

1. Introduction and Preliminaries

Let \sum_{p} denote the class of functions of the form:

$$
\begin{equation*}
f(z)=z^{-p}+\sum_{k=0}^{\infty} a_{k} z^{k} \quad(p \in \mathbb{N}=\{1,2,3, \ldots\}) \tag{1.1}
\end{equation*}
$$

which are analytic and p-valent in the punctured unit disc U^{*} $=\{z \in \mathbb{C}: 0<|z|<1\}=U \backslash\{0\}$. Let $P_{k}(\beta)$ be the class of functions $\phi(z)$ analytic in U satisfying the properties $\phi(0)=1$ and

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|\frac{\Re\{\phi(z)\}-\beta}{1-\beta}\right| d \theta \leq k \pi \tag{1.2}
\end{equation*}
$$

where $z=r e^{i \theta}, k \geq 2$ and $0 \leq \beta<1$. The class $P_{k}(\beta)$ was introduced by Padmanabhan and Parvatham [11]. For $\beta=0$, the class $P_{k}(0)=P_{k}$ was introduced by Pinchuk [12]. Also we note that $P_{2}(\beta)=P(\beta)$, where $P(\beta)$ is the class of functions with positive real part greater than β and $P_{2}(0)=P$, where P is the class of functions with positive real part. From (1.2), we have $h(z) \in P_{k}(\beta)$ if and

* Corresponding Author.

Received August 24, 2012; accepted May 9, 2013. 2010 Mathematics Subject Classification: 30C45.
Key words and phrases: Bazilevic function, p-valent meromorphic functions, linear operator.
only if there exists $h_{1}, h_{2} \in P(\beta)$ such that

$$
\begin{equation*}
\phi(z)=\left(\frac{k}{4}+\frac{1}{2}\right) h_{1}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) h_{2}(z) \quad(z \in U) . \tag{1.3}
\end{equation*}
$$

It is known that, the class $P_{k}(\beta)$ is a convex set (see [10]).
For functions $f(z) \in \sum_{p}$ given by (1.1) and $g(z) \in \sum_{p}$ given by

$$
\begin{equation*}
g(z)=z^{-p}+\sum_{k=0}^{\infty} a_{k} z^{k} \quad(p \in \mathbb{N}) \tag{1.4}
\end{equation*}
$$

the Hadamard product (or convolution) of $f(z)$ and $g(z)$, is defined by

$$
\begin{equation*}
(f * g)(z)=z^{-p}+\sum_{k=0}^{\infty} a_{k} b_{k} z^{k}=(g * f)(z) \tag{1.5}
\end{equation*}
$$

Aouf et al. [3] considered the following linear operator $D_{\lambda, p}^{m}(f * g)(z): \sum_{p} \longrightarrow \sum_{p}$ as follows:

$$
\begin{align*}
& D_{\lambda, p}^{0}(f * g)(z)=(f * g)(z), \tag{1.6}\\
D_{\lambda, p}^{1}(f * g)(z)= & D_{\lambda, p}(f * g)(z)=(1-\lambda)(f * g)(z)+\frac{\lambda}{z^{p}}\left(z^{p+1}(f * g)(z)\right)^{\prime} \\
= & \frac{1}{z^{p}}+\sum_{k=0}^{\infty}[1+\lambda(k+p)] a_{k} b_{k} z^{k}(\lambda \geq 0 ; p \in \mathbb{N}) \\
D_{\lambda, p}^{2}(f * g)(z)= & D_{\lambda, p}\left(D_{\lambda, p}(f * g)\right)(z) \\
= & (1-\lambda) D_{\lambda, p}(f * g)(z)+\frac{\lambda}{z^{p}}\left(z^{p+1} D_{\lambda, p}(f * g)(z)\right)^{\prime} \\
= & \frac{1}{z^{p}}+\sum_{k=0}^{\infty}[1+\lambda(k+p)]^{2} a_{k} b_{k} z^{k}(\lambda \geq 0 ; p \in \mathbb{N})
\end{align*}
$$

and (in general)
$D_{\lambda, p}^{m}(f * g)(z)=D_{\lambda, p}\left(D_{\lambda, p}^{m-1}(f * g)(z)\right)$

$$
\begin{equation*}
=\frac{1}{z^{p}}+\sum_{k=0}^{\infty}[1+\lambda(k+p)]^{m} a_{k} b_{k} z^{k}\left(\lambda \geq 0 ; p \in \mathbb{N} ; m \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}\right) . \tag{1.8}
\end{equation*}
$$

From (1.8) it is easy to verify that:
(1.9) $\quad \lambda z\left(D_{\lambda, p}^{m}(f * g)(z)\right)^{\prime}=D_{\lambda, p}^{m+1}(f * g)(z)-(\lambda p+1) D_{\lambda, p}^{m}(f * g)(z) \quad(\lambda>0)$.

It should be remarked that the linear operator $D_{\lambda, p}^{m}(f * g)$ is a generalization of many othear linear operators considered earlier. We have:
(1) If we take $g(z)=\frac{1}{z^{p}(1-z)}\left(\right.$ or $\left.b_{k}=1\right)$, then we have the operator $D_{\lambda, p}^{m}(f)(z)$ which was introduced and studied by Aouf et al. [3];
(2) If we take $g(z)=\frac{1}{z^{p}(1-z)} \quad\left(\right.$ or $\left.b_{k}=1\right)$ and $\lambda=1$, then we have the operator $M_{p}^{m}(f)(z)$ which was introduced and studied by Aouf and Hossen [2] and Srivastava and Patel [13];
(3) If we take $m=0$ and $g(z)=z^{-p}+\sum_{k=0}^{\infty} \Psi_{k}\left(\alpha_{1}\right) z^{k}$ (or $\left.b_{k}=\Psi_{k}\left(\alpha_{1}\right)\right)$, where

$$
\begin{equation*}
\Psi_{k}\left(\alpha_{1}\right)=\frac{\left(\alpha_{1}\right)_{k+p} \ldots \ldots .\left(\alpha_{q}\right)_{k+p}}{\left(\beta_{1}\right)_{k+p} \ldots\left(\beta_{s}\right)_{k}(1)_{k+p}} \quad\left(q \leq s+1 ; q, s \in \mathbb{N}_{0}\right) \tag{1.10}
\end{equation*}
$$

then the operator $D_{\lambda, p}^{0}(f * g)=(f * g)$ reduces to the operator $H_{p, q, s}\left(\alpha_{1}\right)$ which was introduced and studied by Liu and Srivastava [8]. The operator $H_{p, q, s}\left(\alpha_{1}\right)$ contains the operator $\ell_{p}\left(\alpha_{1}, \beta_{1}\right)$ [7] for $q=2, s=1$, and $\alpha_{2}=1$ and also contains the operator $D^{\nu+p-1}$ (see [1] and [4]) for $q=2, s=1$ and $\alpha_{1}=\nu+p(\nu>-p ; p \in$ $\mathbb{N}), \alpha_{2}=1$ and $\beta_{1}=p ;$
(4) If we take $m=0$ and $g(z)=z^{-p}+\sum_{k=0}^{\infty}\left(\frac{l+\gamma(k+p)}{l}\right)^{\mu} z^{k}$
$\left(l>0, \gamma \geq 0, p \in \mathbb{N}, \mu \in \mathbb{N}_{0}\right)$, then the operator $D_{\lambda, p}^{0}(f * g)=(f * g)$ reduces to the operator $J_{p}^{\mu}(\gamma, l)$ which was introduced and studied by El-Ashwah [5];
(5) If we take $m=0$ and $g(z)=z^{-p}+\sum_{k=0}^{\infty}\left(\frac{l}{l+\gamma(k+p)}\right)^{\mu} z^{k}$
$\left(l>0, \gamma \geq 0, p \in \mathbb{N}, \mu \in \mathbb{N}_{0}\right)$, then the operator $D_{\lambda, p}^{0}(f * g)=(f * g)$ reduces to the operator $\mathcal{L}_{p}^{\mu}(\gamma, l)$ which was introduced and studied by El-Ashwah [6].

Now, by using the linear operator $D_{\lambda, p}^{m}(f * g)(z)$, we introduce class of p-valent Bazilevic functions of \sum_{p} as follows:

Definition 1.1. A function $f(z) \in \sum_{p}$ is said to be in the class $K_{k}^{m}(p, \lambda, \alpha, \beta, \gamma)$ if it satisfies the following condition:

$$
\begin{gather*}
{\left[(1-\gamma)\left(z^{p} D_{\lambda, p}^{m}(f * g)(z)\right)^{\alpha}+\gamma\left(\frac{D_{\lambda, p}^{m+1}(f * g)(z)}{D_{\lambda, p}^{m}(f * g)(z)}\right)\left(z^{p} D_{\lambda, p}^{m}(f * g)(z)\right)^{\alpha}\right] \in \mathcal{P}_{k}(\beta)} \tag{1.11}\\
(k \geq 2 ; \gamma \geq 0 ; \alpha, \lambda>0 ; 0 \leq \beta<1 ; z \in U)
\end{gather*}
$$

In this paper, we investigate several properties of the class $K_{k}^{m}(p, \lambda, \alpha, \beta, \gamma)$.

2. Main Results

Unless otherwise mentioned, we assume throughout this paper that $k \geq 2, \alpha, \gamma, \lambda>$ $0,0 \leq \beta<1$ and all powers are understood as principle values.

To prove our results we need the following lemma.

Lemma 2.1.([9]) Let $u=u_{1}+i u_{2}, v=v_{1}+i v_{2}$ and $\Phi(u, v)$ be a complex-valued function satisfying the conditions:
(i) $\Phi(u, v)$ is continuous in a domain $D \in \mathbb{C}^{2}$.
(ii) $(0,1) \in D$ and $\Phi(1,0)>0$.
(iii) $\Re\left\{\Phi\left(i u_{2}, v_{1}\right)\right\}>0$ whenever $\left(i u_{2}, v_{1}\right) \in D$ and $v_{1} \leq-\frac{1}{2}\left(1+u_{2}^{2}\right)$.

If $h(z)=1+c_{n} z^{n}+c_{n+1} z^{n+1}+\ldots$ is analytic in U such that $\left(h(z), z h^{\prime}(z)\right) \in D$ and $\Re\left\{\Phi\left(h(z), z h^{\prime}(z)\right)\right\}>0$ for $z \in U$, then $\Re\{h(z)\}>0$ in U.
Theorem 2.2. If $f \in K_{k}^{m}(p, \lambda, \alpha, \beta, \gamma)$, then

$$
\begin{equation*}
\left(z^{p} D_{\lambda, p}^{m}(f * g)(z)\right)^{\alpha} \in \mathcal{P}_{k}(\mu) \tag{2.1}
\end{equation*}
$$

where μ is given by

$$
\begin{equation*}
\mu=\frac{\gamma \lambda+2 \alpha \beta}{2 \alpha+\gamma \lambda} \tag{2.2}
\end{equation*}
$$

Proof. Setting

$$
\begin{align*}
& \left(z^{p} D_{\lambda, p}^{m}(f * g)(z)\right)^{\alpha}=H(z)=(1-\mu) h(z)+\mu \tag{2.3}\\
& \quad=\left(\frac{k}{4}+\frac{1}{2}\right)\left\{(1-\mu) h_{1}(z)+\mu\right\}-\left(\frac{k}{4}-\frac{1}{2}\right)\left\{(1-\mu) h_{2}(z)+\mu\right\}
\end{align*}
$$

where $h_{i}(z)(i=1,2)$ are analytic in U with $h_{i}(0)=1(i=1,2)$, and $h(z)$ is given by (1.3). Differentiating both sides of (2.3) with respect to z and using (1.9) in the resulting equation, we obtain

$$
\begin{aligned}
& {\left[(1-\gamma)\left(z^{p} D_{\lambda, p}^{m}(f * g)(z)\right)^{\alpha}+\gamma\left(\frac{D_{\lambda, p}^{m+1}(f * g)(z)}{D_{\lambda, p}^{m}(f * g)(z)}\right)\left(z^{p} D_{\lambda, p}^{m}(f * g)(z)\right)^{\alpha}\right] } \\
= & \left\{(1-\mu) h(z)+\mu+\frac{\gamma \lambda(1-\mu) z h^{\prime}(z)}{\alpha}\right\} \in P_{k}(\beta) \quad(z \in U),
\end{aligned}
$$

which implies that

$$
\frac{1}{1-\beta}\left\{\mu-\beta+(1-\mu) h_{i}(z)+\frac{\gamma \lambda(1-\mu) z h_{i}^{\prime}(z)}{\alpha}\right\} \in P \quad(z \in U ; i=1,2)
$$

We form the function $\Phi(u, v)$ by choosing $u=h_{i}(z), v=z h_{i}^{\prime}(z)$, that is

$$
\Phi(u, v)=\mu-\beta+(1-\mu) u+\frac{\gamma \lambda(1-\mu) v}{\alpha} .
$$

Clearly, the first two conditions of Lemma 2.1 are satisfied. Now, we verify the condition (iii) as follows:

$$
\begin{aligned}
\Re\left\{\Phi\left(i u_{2}, v_{1}\right)\right\} & =\mu-\beta+\Re\left\{\frac{\gamma \lambda(1-\mu) v_{1}}{\alpha}\right\} \\
& \leq \mu-\beta-\frac{\gamma \lambda(1-\mu)\left(1+u_{2}^{2}\right)}{2 \alpha} \\
& =\frac{A+B u_{2}^{2}}{2 C},
\end{aligned}
$$

where

$$
\begin{aligned}
& A=2 \alpha(\mu-\beta)-\gamma \lambda(1-\mu) \\
& B=-\gamma \lambda(1-\mu) \\
& C=2 \alpha
\end{aligned}
$$

We note that $\Re\left\{\Phi\left(i u_{2}, v_{1}\right)\right\}<0$ if and only if $A=0, B<0$. From μ given by (2.2), we have $0 \leq \mu<1, A=0$ and $B<0$. Therefore applying Lemma 2.1, we have $h_{i}(z) \in P(i=1,2)$ and consequently $H(z) \in P_{k}(\mu)$ for $z \in U$. This completes the proof of Theorem 2.2.
Theorem 2.3. If $f \in K_{k}^{m}(p, \lambda, \alpha, \beta, \gamma)$, then

$$
\begin{equation*}
\left(z^{p} D_{\lambda, p}^{m}(f * g)(z)\right)^{\frac{\alpha}{2}} \in \mathcal{P}_{k}(\eta) \tag{2.4}
\end{equation*}
$$

where η is given by

$$
\begin{equation*}
\eta=\frac{\lambda \gamma+\sqrt{n^{2} \gamma^{2} \lambda^{2}+4(\alpha+n \gamma \lambda) \beta \alpha}}{2(\alpha+n \gamma \lambda)} . \tag{2.5}
\end{equation*}
$$

Proof. Let $f \in K_{k}^{m}(p, \lambda, \alpha, \beta, \gamma)$ and
(2.6) $\left(z^{p} D_{\lambda, p}^{m}(f * g)(z)\right)^{\alpha}=M(z)=[(1-\eta) h(z)+\eta]^{2}$

$$
=\left(\frac{k}{4}+\frac{1}{2}\right)\left[(1-\eta) h_{1}(z)+\eta\right]^{2}-\left(\frac{k}{4}-\frac{1}{2}\right)\left[(1-\eta) h_{2}(z)+\eta\right]^{2},
$$

where $h_{i}(z)(i=1,2)$ are analytic in U with $h_{i}(0)=1(i=1,2)$ and $h(z)$ is given by (1.3). Differentiating both sides of (2.6) with respect to z and using (1.9) in the resulting equation, we obtain

$$
\begin{aligned}
& {\left[(1-\gamma)\left(z^{p} D_{\lambda, p}^{m}(f * g)(z)\right)^{\frac{\alpha}{2}}+\gamma\left(\frac{D_{\lambda, p}^{m+1}(f * g)(z)}{D_{\lambda, p}^{m}(f * g)(z)}\right)\left(z^{p} D_{\lambda, p}^{m}(f * g)(z)\right)\right] } \\
= & \left\{[(1-\eta) h(z)+\eta]^{2}+[(1-\eta) h(z)+\eta] \frac{2 \gamma \lambda(1-\eta) z h^{\prime}(z)}{\alpha}\right\} \in P_{k}(\beta) \quad(z \in U),
\end{aligned}
$$

which implies that
$\frac{1}{1-\beta}\left\{\left[(1-\eta) h_{i}(z)+\eta\right]^{2}+[(1-\eta) h(z)+\eta] \frac{2 \gamma \lambda(1-\eta) z h_{i}^{\prime}(z)}{\alpha}-\beta\right\} \in P \quad(i=1,2)$.
We form the function $\Phi(u, v)$ by choosing $u=h_{i}(z), v=z h_{i}^{\prime}(z)$, that is

$$
\Phi(u, v)=[(1-\eta) u+\eta]^{2}+[(1-\eta) u+\eta] \frac{2 \gamma \lambda(1-\eta) v}{\alpha}-\beta
$$

Clearly, the conditions (i) and (ii) of Lemma 2.1 are satisfied. Now, we verify the condition (iii) as follows:

$$
\begin{aligned}
\Re\left\{\Phi\left(i u_{2}, v_{1}\right)\right\} & =\eta^{2}-(1-\eta)^{2} u_{2}^{2}+\frac{2 \gamma \lambda \eta\left(1-\rho_{4}\right) v_{1}}{\alpha}-\beta \\
& \leq \eta^{2}-\beta-(1-\eta)^{2} u_{2}^{2}-\frac{\gamma \lambda \eta(1-\eta)\left(1+u_{2}^{2}\right)}{\alpha} \\
& =\frac{A+B u_{2}^{2}}{2 C},
\end{aligned}
$$

where

$$
\begin{aligned}
A & =\alpha\left(\eta^{2}-\beta\right)-\gamma \lambda \eta(1-\eta) \\
B & =-\left[\alpha(1-\eta)^{2}+n \gamma \lambda \eta(1-\eta)\right] \\
C & =\frac{\alpha}{2}
\end{aligned}
$$

We note that $\Re\left\{\Phi\left(i u_{2}, v_{1}\right)\right\}<0$ if and only if $A=0, B<0$. From η given by (2.5), we have $0 \leq \eta<1, A=0$ and $B<0$. Therefore applying Lemma 2.1, we have $h_{i}(z) \in P(i=1,2)$ and consequently $M(z) \in P_{k}(\eta)$ for $z \in U$. This completes the proof of Theorem 2.3
Remark 2.4. Specializing m, λ and $g(z)$ in the above results, we obtain the corresponding results for classes corresponding to the corresponding operators (1-5) defined in the introduction.

References

[1] M. K. Aouf, New certeria for multivalent meromorphic starlike functions of order alpha, Proc. Japan. Acad., 69(1993), 66-70.
[2] M. K. Aouf and H. M. Hossen, New certeria for meromorphic p-valent starlike functions, Tsukuba J. Math., 17(2)(1993), 481-486.
[3] M. K. Aouf, A. Shamandy, A. O. Mostafa and S. M. Madian, Properties of some families of meromorphic p-valent functions involving certain differential operator, Acta Univ. Apulensis, 20(2009), 7-16.
[4] M. K. Aouf and H. M. Srivastava, A new criterion for meromorphically p-valent convex functions of order alpha, Math. Sci. Research Hot-Line, 1(8)(1997), 7-12.
[5] R. M. El-Ashwah, A note on certain meromorphic p-valent functions, Appl. Math. Letters, 22(2009), 1756-1759.
[6] R. M. El-Ashwah, Properties of certain class of p-valent meromorphic functions associated with new Integral operator, Acta Univ. Apulensis, 29(2012), 255-264.
[7] J.-L. Liu and H. M. Srivastava, A linaer operator and associated with the generalized hypergeometric function, J. Math. Anal. Appl., 259(2000), 566-581.
[8] J.-L. Liu and H. M. Srivastava, Classes of meromorphically multivalent functions associated with the generalized hypergeometric function, Math. Comput. Modelling, 39(2004), 21-34.
[9] S. S. Miller and P. T. Mocanu, Second order differential inequalities in the complex plane, J. Math. Anal. Appl., 65(2)(1978), 289-305.
[10] K. I. Noor, On subclasses of close-to-convex functions of higher order, Internat. J. Math. Math. Sci., 15(1992), 279-290.
[11] K. S. Padmanabhan and R. Parvatham, Properties of a class of functions with bounded boundary rotation, Ann. Polon. Math., 31(1975), 311-323.
[12] B. Pinchuk, Functions with bounded boundary rotation, Isr. J. Math., 10(1971), 7-16.
[13] H .M. Srivastava and J. Patel, Applications of differential subordinations to certain classes of meromorphically multivalent functions, J. Ineq. Pure Appl. Math., $\mathbf{6 (3)}(2005), 1-15$.

