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Abstract. In this paper, we introduce a class of p−valent meromorphic functions asso-

ciated with linear operator and derive several interesting results of this class.

1. Introduction and Preliminaries

Let
∑

p denote the class of functions of the form:

(1.1) f (z) = z−p +
∞∑
k=0

akz
k (p ∈ N = {1, 2, 3, ...}) ,

which are analytic and p-valent in the punctured unit disc U∗

= {z ∈ C : 0 < |z| < 1} = U\ {0}. Let Pk (β) be the class of functions ϕ (z) analytic
in U satisfying the properties ϕ (0) = 1 and

(1.2)

∫ 2π

0

∣∣∣∣ℜ{ϕ (z)} − β

1− β

∣∣∣∣ dθ ≤ kπ,

where z = reiθ, k ≥ 2 and 0 ≤ β < 1. The class Pk (β) was introduced by Pad-
manabhan and Parvatham [11]. For β = 0, the class Pk (0) = Pk was introduced
by Pinchuk [12]. Also we note that P2 (β) = P (β), where P (β) is the class of
functions with positive real part greater than β and P2 (0) = P , where P is the
class of functions with positive real part. From (1.2), we have h (z) ∈ Pk (β) if and
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only if there exists h1, h2 ∈ P (β) such that

(1.3) ϕ (z) =

(
k

4
+

1

2

)
h1 (z)−

(
k

4
− 1

2

)
h2 (z) (z ∈ U) .

It is known that, the class Pk (β) is a convex set (see [10]).
For functions f(z) ∈

∑
p given by (1.1) and g(z) ∈

∑
p given by

(1.4) g (z) = z−p +
∞∑
k=0

akz
k (p ∈ N) ,

the Hadamard product (or convolution) of f(z) and g(z), is defined by

(1.5) (f ∗ g) (z) = z−p +

∞∑
k=0

akbkz
k = (g ∗ f) (z) .

Aouf et al. [3] considered the following linear operator Dm
λ,p (f ∗ g) (z) :

∑
p −→

∑
p

as follows:

(1.6) D0
λ,p(f ∗ g)(z) = (f ∗ g)(z),

D1
λ,p(f ∗ g)(z) = Dλ,p(f ∗ g)(z) = (1− λ)(f ∗ g)(z) + λ

zp
(zp+1(f ∗ g)(z))′

(1.7) =
1

zp
+

∞∑
k=0

[1 + λ(k + p)]akbkz
k (λ ≥ 0; p ∈ N),

D2
λ,p(f ∗ g)(z) = Dλ,p (Dλ,p(f ∗ g)) (z)

= (1− λ)Dλ,p(f ∗ g)(z) + λ

zp
(zp+1Dλ,p(f ∗ g)(z))′

=
1

zp
+

∞∑
k=0

[1 + λ(k + p)]2akbkz
k (λ ≥ 0; p ∈ N),

and ( in general )

Dm
λ,p(f ∗g)(z) = Dλ,p(D

m−1
λ,p (f ∗g)(z))

(1.8) =
1

zp
+

∞∑
k=0

[1 + λ(k + p)]makbkz
k (λ ≥ 0; p ∈ N; m ∈ N0 = N ∪ {0}).

From (1.8) it is easy to verify that:

(1.9) λz(Dm
λ,p(f ∗ g)(z))′ = Dm+1

λ,p (f ∗ g)(z)− (λp+ 1)Dm
λ,p(f ∗ g)(z) (λ > 0) .
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It should be remarked that the linear operator Dm
λ,p(f ∗ g) is a generalization of

many othear linear operators considered earlier. We have:

(1) If we take g(z) = 1
zp(1−z) (or bk = 1) , then we have the operator Dm

λ,p(f)(z)

which was introduced and studied by Aouf et al. [3];

(2) If we take g(z) = 1
zp(1−z) (or bk = 1) and λ = 1, then we have the operator

Mm
p (f)(z) which was introduced and studied by Aouf and Hossen [2] and Srivastava

and Patel [13];

(3) If we take m = 0 and g(z) = z−p +
∑∞

k=0 Ψk(α1)z
k (or bk = Ψk(α1)), where

(1.10) Ψk(α1) =
(α1)k+p.......(αq)k+p

(β1)k+p...(βs)k (1)k+p
(q ≤ s+ 1; q, s ∈ N0) ,

then the operator D0
λ,p (f ∗ g) = (f ∗ g) reduces to the operator Hp,q,s (α1) which

was introduced and studied by Liu and Srivastava [8]. The operator Hp,q,s (α1)
contains the operator ℓp(α1, β1) [7] for q = 2, s = 1, and α2 = 1 and also contains
the operator Dν+p−1 (see [1] and [4]) for q = 2, s = 1 and α1 = ν + p (ν > −p; p ∈
N) , α2 = 1 and β1 = p;

(4) If we take m = 0 and g(z) = z−p +
∑∞

k=0

(
l+γ(k+p)

l

)µ

zk

(l > 0, γ ≥ 0, p ∈ N, µ ∈ N0), then the operator D0
λ,p (f ∗ g) = (f ∗ g) reduces to the

operator Jµ
p (γ, l) which was introduced and studied by El-Ashwah [5];

(5) If we take m = 0 and g(z) = z−p +
∑∞

k=0

(
l

l+γ(k+p)

)µ

zk

(l > 0, γ ≥ 0, p ∈ N, µ ∈ N0), then the operator D0
λ,p (f ∗ g) = (f ∗ g) reduces to the

operator Lµ
p (γ, l) which was introduced and studied by El-Ashwah [6].

Now, by using the linear operator Dm
λ,p(f ∗g)(z), we introduce class of p−valent

Bazilevic functions of
∑

p as follows:

Definition 1.1. A function f (z) ∈
∑

p is said to be in the class Km
k (p, λ, α, β, γ)

if it satisfies the following condition:
(1.11)[

(1− γ)
(
zpDm

λ,p(f ∗ g)(z)
)α

+ γ

(
Dm+1

λ,p (f∗g)(z)
Dm

λ,p(f∗g)(z)

)(
zpDm

λ,p(f ∗ g)(z)
)α] ∈ Pk (β)

(k ≥ 2; γ ≥ 0;α, λ > 0; 0 ≤ β < 1; z ∈ U) .

In this paper, we investigate several properties of the class Km
k (p, λ, α, β, γ).

2. Main Results

Unless otherwise mentioned, we assume throughout this paper that k ≥ 2, α, γ, λ >
0, 0 ≤ β < 1 and all powers are understood as principle values.

To prove our results we need the following lemma.
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Lemma 2.1.([9]) Let u = u1 + iu2, v = v1 + iv2 and Φ (u, v) be a complex-valued
function satisfying the conditions:

(i) Φ (u, v) is continuous in a domain D ∈ C2.

(ii) (0, 1) ∈ D and Φ(1, 0) > 0.

(iii) ℜ{Φ(iu2, v1)} > 0 whenever (iu2, v1) ∈ D and v1 ≤ − 1
2

(
1 + u2

2

)
.

If h(z) = 1+cnz
n+cn+1z

n+1+... is analytic in U such that
(
h (z) , zh

′
(z)

)
∈ D

and ℜ
{
Φ
(
h (z) , zh

′
(z)

)}
> 0 for z ∈ U , then ℜ{h (z)} > 0 in U .

Theorem 2.2. If f ∈ Km
k (p, λ, α, β, γ) , then

(2.1)
(
zpDm

λ,p(f ∗ g)(z)
)α ∈ Pk (µ) ,

where µ is given by

(2.2) µ =
γλ+ 2αβ

2α+ γλ
.

Proof. Setting

(2.3)
(
zpDm

λ,p(f ∗ g)(z)
)α

= H(z) = (1− µ)h (z) + µ

=

(
k

4
+

1

2

)
{(1− µ)h1 (z) + µ}−

(
k

4
− 1

2

)
{(1− µ)h2 (z) + µ} ,

where hi (z) (i = 1, 2) are analytic in U with hi (0) = 1 (i = 1, 2), and h(z) is given
by (1.3). Differentiating both sides of (2.3) with respect to z and using (1.9) in the
resulting equation, we obtain[

(1− γ)
(
zpDm

λ,p(f ∗ g)(z)
)α

+ γ

(
Dm+1

λ,p (f∗g)(z)
Dm

λ,p(f∗g)(z)

)(
zpDm

λ,p(f ∗ g)(z)
)α]

=

{
(1− µ)h (z) + µ+

γλ (1− µ) zh
′
(z)

α

}
∈ Pk (β) (z ∈ U) ,

which implies that

1

1− β

{
µ− β + (1− µ)hi (z) +

γλ (1− µ) zh
′

i (z)

α

}
∈ P (z ∈ U ; i = 1, 2) .

We form the function Φ (u, v) by choosing u = hi(z), v = zh
′

i (z), that is

Φ (u, v) = µ− β + (1− µ)u+
γλ (1− µ) v

α
.
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Clearly, the first two conditions of Lemma 2.1 are satisfied. Now, we verify the
condition (iii) as follows:

ℜ{Φ(iu2, v1)} = µ− β + ℜ
{
γλ (1− µ) v1

α

}
≤ µ− β −

γλ (1− µ)
(
1 + u2

2

)
2α

=
A+Bu2

2

2C
,

where

A = 2α (µ− β)− γλ (1− µ) ,

B = −γλ (1− µ) ,

C = 2α.

We note that ℜ{Φ(iu2, v1)} < 0 if and only if A = 0, B < 0. From µ given by (2.2),
we have 0 ≤ µ < 1, A = 0 and B < 0. Therefore applying Lemma 2.1, we have
hi (z) ∈ P (i = 1, 2) and consequently H (z) ∈ Pk (µ) for z ∈ U . This completes the
proof of Theorem 2.2. 2

Theorem 2.3. If f ∈ Km
k (p, λ, α, β, γ) , then

(2.4)
(
zpDm

λ,p(f ∗ g)(z)
)α

2 ∈ Pk (η) ,

where η is given by

(2.5) η =
λγ +

√
n2γ2λ2 + 4 (α+ nγλ)βα

2 (α+ nγλ)
.

Proof. Let f ∈ Km
k (p, λ, α, β, γ) and

(2.6)
(
zpDm

λ,p(f ∗ g)(z)
)α

= M(z) = [(1− η)h (z) + η]
2

=

(
k

4
+

1

2

)
[(1− η)h1 (z) + η]

2−
(
k

4
− 1

2

)
[(1− η)h2 (z) + η]

2
,

where hi (z) (i = 1, 2) are analytic in U with hi (0) = 1 (i = 1, 2) and h(z) is given
by (1.3). Differentiating both sides of (2.6) with respect to z and using (1.9) in the
resulting equation, we obtain[

(1− γ)
(
zpDm

λ,p(f ∗ g)(z)
)α

2

+ γ

(
Dm+1

λ,p (f∗g)(z)
Dm

λ,p(f∗g)(z)

)(
zpDm

λ,p(f ∗ g)(z)
)]

=

{
[(1− η)h (z) + η]

2
+ [(1− η)h (z) + η] 2γλ(1−η)zh

′
(z)

α

}
∈ Pk (β) (z ∈ U) ,
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which implies that

1

1− β

{
[(1− η)hi (z) + η]

2
+ [(1− η)h (z) + η]

2γλ (1− η) zh
′

i (z)

α
− β

}
∈P (i = 1, 2) .

We form the function Φ (u, v) by choosing u = hi(z), v = zh
′

i (z), that is

Φ (u, v) = [(1− η)u+ η]
2
+ [(1− η)u+ η]

2γλ (1− η) v

α
− β.

Clearly, the conditions (i) and (ii) of Lemma 2.1 are satisfied. Now, we verify the
condition (iii) as follows:

ℜ{Φ(iu2, v1)} = η2 − (1− η)
2
u2
2 +

2γλη (1− ρ4) v1
α

− β

≤ η2 − β − (1− η)
2
u2
2 −

γλη (1− η)
(
1 + u2

2

)
α

=
A+Bu2

2

2C
,

where

A = α
(
η2 − β

)
− γλη (1− η) ,

B = −
[
α (1− η)

2
+ nγλη (1− η)

]
,

C =
α

2
.

We note that ℜ{Φ(iu2, v1)} < 0 if and only if A = 0, B < 0. From η given by (2.5),
we have 0 ≤ η < 1, A = 0 and B < 0. Therefore applying Lemma 2.1,we have
hi (z) ∈ P (i = 1, 2) and consequently M (z) ∈ Pk (η) for z ∈ U . This completes the
proof of Theorem 2.3 2

Remark 2.4. Specializing m,λ and g (z) in the above results, we obtain the cor-
responding results for classes corresponding to the corresponding operators (1-5)
defined in the introduction.
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