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ABSTRACT. In [9], the author extends the definition of lifting and supplemented modules
to §-lifting and d-supplemented by replacing “small submodule” with “§-small submodule”
introduced by Zhou in [13]. The aim of this paper is to show new properties of ¢-lifting and
d-supplemented modules. Especially, we show that any finite direct sum of d-hollow mod-
ules is d-supplemented. On the other hand, the notion of amply d-supplemented modules is
studied as a generalization of amply supplemented modules and several properties of these
modules are given. We also prove that a module M is Artinian if and only if M is am-
ply d-supplemented and satisfies Descending Chain Condition (DCC) on §-supplemented
modules and on d-small submodules. Finally, we obtain the following result: a ring R is
right Artinian if and only if R is a §-semiperfect ring which satisfies DCC on §-small right
ideals of R.

1. Introduction

Throughout this paper, we will assume that R is an associative ring with unity
and all modules are unital right R-modules.

We recall some basic notions related to our topic. A submodule N of a module
M is called small in M, written N < M, if, whenever M = L + N for any
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submodule L of M, we have L = M. A module M is called lifting if, for every
submodule N of M, there exists a decomposition M = A& B such that A < N and
NN B < M ([11]). In [13], the author defined the notion of §-small submodules
as follows. A submodule N of a module M is called a §-small submodule, written
as N <5 M, if, whenever M = N + X with M/X is singular, we have M = X.
Following Kosgan [9], a module M is called §-lifting if, for every N < M, there exists
a decomposition M = A & B such that A < N and N N B is é-small in M. It is
obvious that every lifting module is J-lifting and every singular 4-lifting module is
lifting.

Lemma 1.1.([9, Lemma 2.9]) Assume that N and L are two submodules of the
module M. Then the following conditions are equivalent :

(1) M=N+L and NN L is §-small in L.

(2) M = N+ L and for any proper submodule K of L with L/K singular, M #
N+ K.

A submodule L of M is called a é-supplement of N in M if N and L satisfy the
conditions in Lemma 1.1. A module M is called d§-supplemented if every submodule
of M has a d-supplement in M (see [9]). It is clear that every supplemented module
is d-supplemented and every singular d-supplemented module is supplemented.

In Section 2, we give some properties of J-supplements. We prove that any
factor module of a d-supplemented module is §-supplemented and that any finite
sum of d-supplemented modules is d-supplemented.

In Section 3, we give some results of decompositions and direct sums of 6-
lifting modules. In particular, the main result in the third section shows that if
M = M; & Ms is a direct sum of §-lifting modules M; and Ms such that M; is
Mj-projective (i=1,2), then M is a ¢-lifting module.

In Section 4, we study the notion of amply d-supplemented modules as a gen-
eralization of amply supplemented modules. Recall that a submodule N of M has
amply supplements in M if, for every L C M with N+ L = M, there is a supplement
L' of N with L’ C L. Recall also that a module M is called amply supplemented
if all submodules have amply supplements in M. We call a module M amply §-
supplemented if for any submodules N and K of M with M = N + K, K contains
a d-supplement of N in M. It is clear that every amply supplemented module is
amply d-supplemented and every singular amply é-supplemented module is amply
supplemented. It is proved in this section that if M is an amply é-supplemented
module such that every §-supplement submodule of M is a direct summand, then M
is 6-lifting. Recall that a ring R is d-semiperfect if the module Ry is §-supplemented
(see [9, Theorem 3.3]). We also characterize §-semiperfect rings in terms of amply
d-supplemented modules.

2. Some Properties of J-Supplemented Submodules

We start with some general results on d-small submodules which are taken from
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[13, Lemmas 1.2 and 1.3].
Lemma 2.1. Let M be an R-module.

(1) If N<s M and M = X + N, then M = X @Y for a projective semisimple
submodule Y with'Y C N.

(2) If K <5 M and f : M — N is a homomorphism, then f(K) <s N. In
particular, if K <5 M C N, then K <5 N.

(3) LetK1 ng QM, KQQMQQM andM:Ml@Mg. ThenKl@KQ <5
My & My if and only if K1 <5 My and Ko <5 M>.

Lemma 2.2. Let A, B and C be submodules of an R-module M. If M = A+ B,
B<C, and C/B <5 M/B, then (ANnC)/(ANB) <s M/(AN B).

Proof. Let X be a submodule of M such that AN B < X, M/X is singular and
M/(ANB) = (ANnC)/(ANB)+ X/(ANB). Then M = (ANC)+ X =C+(ANX)
by [4, Lemma 1.24]. Therefore M/B = C/B + ((AN X) + B)/B. Note that

(M/B)/[(ANX)+B)/B] =(C+(ANX))/(B+(ANX))

(ANC)+ B+ (ANnX))/(B+ (AN X))
(ANnC)/(ANnC)N(B+ (AN X)))
(
(

Il

ANC)/(ANCNX)
(AnC)+X)/X
M/X.

1

Since M /X is singular, it follows that M = (AN X) + B. Now, since M = A+ X
we get M = X + (AN B) = X. Hence, (ANC)/(ANB) <s M/(AN B). 0

Proposition 2.3. Let M be an R-module.
(1) Suppose that K and L are submodules of M such that K < L.

(a) If L is a 0-supplement in M, then L/K is a 0-supplement in M/K.

(b) If L has a 6-supplement H in M, then (H + K)/K is a §-supplement
of L/K in M/K.

(2) Let B<C < M be submodules of M. If C/B is a §-supplement in M/B and
B is a §-supplement in M, then C' is a d-supplement submodule of M.

(3) Assume that M = My & Ms. If A is a §-supplement of A" in My and B is a
d-supplement of B’ in My, then A® B is a d-supplement of A’ & B’ in M.

Proof. (1)(a) Let N be a submodule of M such that L+ N =M and LN N <5 L.
Therefore L/K+(N+ K)/K = M/K and [LN(N+K)]/K = [(LNN)+ K]/K <5
M/K by Lemma 2.1(2).

(b) This can be proved by following the same method as in (a).

(2) Assume that C'/B is a d-supplement of X/B in M/B and B is a §-supplement
of Yin M. Then M/B = (C/B)+ (X/B) and (C/B)N(X/B) <5 C/B. Moreover,
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M = B+Y and BNY < B. Note that C = CN(B+Y) = B+(CNY'). Since (CN
X)/B < C/B, it follows from Lemma 2.2 that (CNXNY)/(BNY) <5 C/(BNY).
As BNY <5 C we have (CNXNY) <5 C. Since X = XN(B+Y)=B+(XNY),
we see that M = C + X = C 4 (X NY). Therefore C is a §-supplement of X NY
in M.

(3) By assumption, we have M; = A+ A’ and AN A" <5 A. Moreover, My =
B+ B and BNB <5 B. Then M = (A® B) 4+ (A’ ® B’). By Lemma 2.1(3),
(ANA")® (BNB') <s A® B. Since (A B)N (A @ B')=(AnA")® (BNB'), it
follows that A @ B is a d-supplement of A’ ® B’ in M. O

Corollary 2.4. Every factor module of a §-supplemented module is §-supplemented.
Lemma 2.5. Let My and My be submodules of M such that My is §-supplemented
and My + Ms has a 6-supplement in M. Then Ms has a 6-supplement in M.

Proof. By assumption, there exits a submodule N of M such that M1+ Ms+N = M
and (M;+M3)NN <5 N. Moreover, since M is §-supplemented, (Ma+N)NM; has
a d-supplement in M;. Then there exists L < Mj such that My = (My+N)NM;+L
and (M2+N)QL<<5 L. Then we have M:Ml +M2+N: (M2+N)QM1+
L+ My;+ N = My + (L + N). Moreover, we have Mo N (L + N) < [(M2+ L) N
N]+[(My+ N)N L] < [(Mz+ M) N N]+ [(Mz+ N)N L]. Now, it follows that
M>;N(L+ N)<s (L+ N). Hence, L + N is a §-supplement of M in M. O

Proposition 2.6. Any finite sum of §-supplemented modules is §-supplemented.

Proof. We prove it for two modules; the finite case can be proved similarly. Let
M; and M5 be two submodules of a module M such that M = M; + M, and
My and My are d-supplemented. It is easily seen that for every submodule N of
M, M; + (Ms + N) has a d-supplement in M. Hence by Lemma 2.5, My + N
has a d-supplement in M. Applying Lemma 2.5 again we conclude that N has a
d-supplement in M. O

Corollary 2.7. Let M be a §-supplemented module. Then every finitely M-
generated module is §-supplemented.

Proof. By Corollary 2.4 and Proposition 2.6. O

Recall that an R-module M is said to be hollow (respectively d-hollow) if every
proper submodule of M is small (respectively d-small) in M. It is clear that every
hollow module is d-hollow. In [3], the author called a module M é-local if, §(M) <5
M and §(M) is a maximal submodule of M. Moreover, the author also shows in [3]
that a local module needs not to be d-local in general.

Proposition 2.8. Let M be a §-hollow module. Then 6(M) = M or M is a local
and a 0-local module.

Proof. Suppose that 6(M) # M. Then §(M) <5 M and Rad(M) # M since
Rad(M) < 6(M) (see [13, Lemma 1.5(1)]). Let N be a maximal submodule of M.
By hypothesis, we have N <5 M. Therefore N < §(M). It follows that §(M) = N.
Then Rad(M) = §(M) is the only maximal submodule of M. Consequently, M is a
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d-local module. On the other hand, it is easy to see that §(M) is small in M. This
implies that M is a local module. g

The proof of the following two results are clear.

Proposition 2.9. Let K be a 6-hollow submodule of the module M. Then K is a
d-supplement of each proper submodule L of M such that K + L = M.

Proposition 2.10. Every §-hollow module is d-supplemented.

Corollary 2.11. Any finite sum of d-hollow modules is §-supplemented.
Proof. Tt can be obtained by using Propositions 2.6 and 2.10. O

Recall that a module M is called cofinitely d-supplemented if every submodule
N of M such that M/N is finitely generated has a d-supplement in M.

Also recall that a module is called coatomic if every proper submodule is con-
tained in a maximal one.

Proposition 2.12. Let M be a coatomic module. Then the following are equivalent:
(i) M is cofinitely 6-supplemented.
(ii) Every mazimal submodule of M has a 6-supplement.

(ili) M =3 ,.; H; where each H; is either simple or d-local.

Proof. The equivalences clearly hold if M is semisimple. So, assume that M is not
semisimple.

(i)=(ii) Clear.

(ii)=-(iii) Let K be the sum of all J-supplement submodules of maximal submod-
ules L of M with Soc(M) < L. By [3, Lemma 3.4], K is a sum of §-local submodules
of M. Suppose that M # Soc(M) + K. Then there is a maximal submodule N of
M such that Soc(M) + K < N. By hypothesis, N has a §-supplement H in M.
Thus H < K < N and N = M, a contradiction. It follows that M = Soc(M) + K,
and the proof is complete.

(iii)=(i) It follows from [1, Proposition 2.5] and [3, Lemma 3.3]. O

Corollary 2.13. If M is a coatomic d-supplemented module, then M = 3., H;
where each H; is either simple or §-local.

Proof. This is clear by Proposition 2.12. m]

3. Decompositions and Direct Sums of §-Lifting Modules

Following [13], a projective module P is called a projective 6-cover of a module
M if there exists an epimorphism f : P — M with Ker(f) <s P, and a ring R
is called d-semiperfect if every simple R-module has a projective d-cover. In [9)],
it is proved that a ring R is J-semiperfect if and only if the R-module Rg is J-
supplemented. The following example shows that a J-lifting module need not be
lifting.
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F F
0 F
n €N, x; € My(F), z € I'}. By [13, Example 4.3], the ring R is d-semiperfect and
§(R) = {(z1, 22, ., Ty, 2, ...) | n €N, m; € Mo(F), x € J} where J = ( 8 5 ) .
Therefore the module Rp is d-lifting by [13, Lemma 2.4 and Theorem 3.6].

On the other hand, by [13, Example 4.3], R is not semiregular. Hence Rp is not
supplemented. Thus Rpg is not lifting.

Example 3.1. Let F be a field, I = and R = {(x1, 22, ..., Tn, T, T, ...)|

Lemma 3.2.(See [9, Lemma 2.3])

(1) The following conditions are equivalent for a module M :

(a) M is §-lifting.

(b) For every N < M, there exists a decomposition N = A ® B such that
A is a direct summand of M and B <s M.

(2) If M is 0-lifting, then any direct summand of M is §-lifting.

Proposition 3.3. Let M be an indecomposable module. Then M is §-lifting if and
only if M is §-hollow.

Proof. Let M be a §-lifting indecomposable module. Let N be a proper submodule
of M. Since M is §-lifting, we have a decomposition M = A @ B such that A < N
and N N B is §-small in B for some submodules A and B of M. Since M is
indecomposable and N # M, we have A = 0, and so M = B. Therefore N <5 M.
Hence, M is é-hollow. The converse is clear. O

Proposition 3.4.
(1) If M is a 0-lifting module, then M/§(M) is a semisimple module.

(2) If M is a §-lifting module, then any submodule N of M with NN §(M) =0
is semisimple.

(3) If the module Ry is 6-lifting, then M/6(M) is a semisimple module for every
R-module M.

Proof. (1) See [9, Lemma 2.12].

(2) Since N = (N @ 6(M))/d(M) < M/6(M) is semisimple by (1), then N is
semisimple.

(3) Let M be an R-module. By hypothesis and (1), R/§(R) is a semisimple ring,.
But, on the other hand Mdo(R) = (M) by [13, Theorem 1.8]. Thus, M/6(M) is a
semisimple module. O

In [9, Example 2.4], it is proved that if R = Zg, then the R-module M =
R @ (2R/4R) is not ¢-lifting, although the R-modules Rr and (2R/4R)g are §-
lifting. The following result deals with a special case of a direct sum of two J-lifting
modules.
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The following theorem may be seen in the literature but we want to give it here for
the readers.

Theorem 3.5. Let M = My & Ms. If My and My are §-lifting modules such that
M; is Mj-projective (i=1,2), then M is a 6-lifting module.

Proof. Let N < M. Since M is d-lifting, there exist submodules K and K’ of M;
such that M; = K@ L, K < M; N (N + M) and LN (N + My) <5 M;. Therefore
M=K®L&M;=N + (L& Ms). On the other hand, since M5 is d-lifting, there
exist submodules X and Y of Mj such that My = X @Y, X < MyN (N + L) and
YN(N+L) <s My. Hence M = (X O K)®(L@®Y)and M = N+ (LaY).
Since M, is Mj-projective, X @& K is (L & Y')-projective by [11, Propositions 4.32
and 4.33]. Then there exists a submodule Ny of N such that M = Ny @ (L @Y).
Then we have NN(L®Y) <Y N(N+L)+LN(N+Y). But Y N(N+L) <5 Mo
and LN (N + M) <5 My. Thus, NN (L®Y) <5 M by Lemma 2.1. m]

Corollary 3.6. Let M = My & M. If My and Ms are d-lifting projective modules,
then M s §-lifting.

Proof. This is clear by Theorem 3.5. O

Corollary 3.7. Let R be a d-semiperfect ring. Then every free module of finite
rank is d-lifting.

Proof. This is clear by Corollary 2.6. m]

Theorem 3.8. (i) If M is a §-lifting module, then M has a decomposition M =
My @ My such that My is semisimple, My is §-lifting and 6(Msz) is an essential
submodule of M.

(ii) If M is a §-lifting module, then M has a decomposition M = My & My such
that My and My are §-lifting modules, 6(M71) = My and §(Ms) <5 M.

Proof. (i) This is by [9, Proposition 2.13] and Lemma 3.2(2).

(ii) Since M is ¢-lifting, there exists a decomposition M = M; & M, such that
M, < 6(M) and §(M) N My <5 M. Now, 6(M) = §(My) ® 6(Ms) implies that
5(M) N My = J(Mg) D (Mg n 5(M1)) = 5(M2) <5 Ms5. On the other hand, 5(M) n
My, = My = 6(My) & (M1 N 6(Mz)) = 6(M;). Moreover, My and My are d-lifting
by Lemma 3.2(2). m

Proposition 3.9. If M is a §-lifting module such that 6(M) has a supplement in
M, then we have a decomposition M = My & My such that My is a lifting module
and My is 0-lifting with §(Msz) = Ms.

Proof. Assume that M is ¢-lifting and let A be a supplement of §(M) in M. Then
we have a decomposition M = M; @ My such that A = M; & (Ms N A) and
Ms N A <5 M. Let N be a submodule of M;. Since M; is a J-lifting module by
Lemma 3.2(2), we have a decomposition M; = X @Y such that N = X & (Y N N)
and YNN <5 Y. Since ANJ(M) < Aand Y NN < 6(M)N A, we obtain that
Y NN <« A. Hence Y NN <Y by [11, Lemma 4.2(2)]. Therefore M; is a lifting
module. Moreover, we have M = 6(Ms) + §(My) + My = 6(Ms) ® M;. This gives
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(5(M2) = M. O

4. Amply §-Supplemented Modules

In this section we study the notion of amply d-supplemented modules. Several
properties of this type of modules are proved. Recall that a module M is amply
d-supplemented if for any submodules N and K of M with M = N+ K, K contains
a d-supplement of N in M. It is clear that every amply d-supplemented module is
d-supplemented.

Lemma 4.1. Let M be an R-module. If every submodule of M is §-supplemented,
then M is amply §-supplemented.

Proof. Let A and B be submodules of M such that M = A + B. Since A is 6-
supplemented and ANB < A, there is a submodule C' < A such that ANB+C = A
and ANBNC <5 C. Therefore C + B =M. Since CNB=CNBNA<;C, C
is a d-supplement of B in M. It follows that M is amply d-supplemented. O

Proposition 4.2. If M is an amply §-supplemented module such that every 6-
supplement submodule of M is a direct summand, then M is a 6-lifting module.

Proof. Let N be a submodule of M. By assumption, N has a d-supplement K and
K has a d-supplement L such that L < N and L is a direct summand of M. Then
M=L&T =L+ K for some submodule T" of M. Note that N=L&(NNT) =
L+ (NnNK). Let m denote the canonical projection # : L @ T — T. Then
m(N)=m(NNK)=NNT. Since K is a é-supplement of N, we have NN K < K.
Hence (NN K)=NNT <s T by Lemma 2.1(2). Consequently, M is a d-lifting
module by Lemma 3.2. O

Proposition 4.3. Any epimorphic image of an amply d-supplemented module is
again amply §-supplemented.

Proof. Let M be an amply d-supplemented module and let f : M — N be an
epimorphism, where N is an R-module. Let N = A+ B. Then f~}(N) = M =
fY(A) + f~Y(B). Since M is an amply J-supplemented module, there is a sub-
module X < f~1(B) such that M = f~}(A4) + X and f~1(A) N X <s X. Hence
N=f(M)=A+f(X)and ANf(X) = f(fH(A)NX) <s f(X) by Lemma 2.1(2).
This implies that f(X) is a é-supplement of A in M. Moreover, we have f(X) < B.
Therefore N is amply d-supplemented. O

Recall that a module M is called m-projective if for every two submodules N
and L of M with M = N + L, there exists an endomorphism « of M such that
a(M) < N and (1 — «)(M) < L. It is well known that 7-projective supplemented
modules are amply supplemented. Next we prove an analogue for this result.

Theorem 4.4. Let M be a w-projective module. If M is §-supplemented, then M
is amply 0-supplemented.

Proof. Let M = N + K. Then there exists o € End(M) such that a(M) < N and
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(1—a)(M) € K. Since M is d-supplemented, there exists a submodule L < M such
that M = N+ L and NNL < L. Clearly, (1—a)(L) < K and M = N+(1—«)(L).
Since NNL <5 Lythen NN(1—a)(L)=(1—-a)(NNL)<s (1 —a)(L). So M is
amply d-supplemented. ]

Corollary 4.5. Let My, Ms, ..., M be submodules of a projective module M such
k

that M = & M;. The following are equivalent:
i=1

(i) M is amply §-supplemented.

(ii) For everyi (1 <1i<k), M; is amply §-supplemented.

Proof. (i)=(ii) By Proposition 4.3.
(ii)=-(i) Since for every 1 <1i < k, M; is amply d-supplemented, it follows from
k
Proposition 2.6 that M = & M; is d-supplemented. By Theorem 4.4, M is amply

i=1
é-supplemented. m]

Proposition 4.6. Let M be an amply d-supplemented module. Assume that for
every submodule K of M such that K = K1N Ky where K1 and Ko are d-supplement
submodules in M with M = K1 + K», every homomorphism 3 : M — M/K can be
lifted to a homomorphism v : M — M. Then M is w-projective.

Proof. Let A and B be submodules of M with M = A + B. Since M is an amply
d-supplemented module, there exist two submodules B’ < B and A’ < A such that
M=A+B =A+B,ANB «s B and A’ N B <5 A’. Now, we consider
the homomorphism 8 : M — M/(A’' N B’) defined by (o’ + V) = b + A’ N B,
where o/ € A’ and ¥’ € B’. By hypothesis, 3 can be lifted to a homomorphism
a : M — M. Moreover, we have a(M) < B’ and (1 — a)(M) < A’. Hence M is
m-projective. O

Let M be a module and B < A < M. If A/B <« M/B then B is called a
coessential submodule of A in M. If A has no proper coessential submodule in M,
then A is called coclosed in M (see [8]).

If A/B <5 M/B and A/B is singular, then B will be called a -coessential
submodule of A. If A has no proper d-coessential submodule in M, then A is called
d-coclosed in M (see [3]). Clearly, every d-coclosed submodule is coclosed.

Note that every d-supplement submodule of a module M is d-coclosed by [3, Corol-
lary 2.6].

Let K < N < M. The submodule K is said to be a §-coclosure of N in M if K

is a d-coessential submodule of N and K is §-coclosed in M.

Proposition 4.7. Let M be a -lifting module. Then every singular §-coclosed
submodule of M is a direct summand.

Proof. Let N be a singular é-coclosed submodule of M. Since M is J-lifting,
there exist submodules M; and Ms of M such that M = M; & My, M; < N and
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NN M, <5 M. Therefore N = M; & (NN M) and NN M,y <s N by [3, Corollary
2.6]. Tt follows that N = M since N/Mj is singular. O

Lemma 4.8. Let M be an amply 6-supplemented module. Then every submodule
N of M has a d-coclosure in M.

Proof. The proof is clear.

A module M is called weakly §-supplemented if for every submodule N < M,
there exists a submodule K < M such that M = N+ K and NN K <5 M. It is
clear that every J-supplemented module is weakly J-supplemented. O

Proposition 4.9. A module M is amply d-supplemented if and only if M is weakly
d-supplemented and every submodule of M has a §-coclosure in M.

Proof. (=) This is clear by Lemma 4.8.

(<) Suppose that M is weakly d-supplemented and every submodule of M has a
d-coclosure in M. Let A and B be two submodules of M such that M = A + B.
Since M is weakly d-supplemented, there exists a submodule C' of M such that
(ANB)+C =M and (ANB)NC <5 M. Then (AN B)+ (CNB) = B. Thus
A+ (CNB) =M by [4, Lemma 1.24]. Let N be a d-coclosure of C N B in M.
Then (C N B)/N is singular, N is d-coclosed in M and (C'N B)/N <s M/N. On
the other hand, we have [(A + N)/N]+ (CNB)/N = M/N and M/(A+ N) &
(CNB)/[(CNB)N(A+ N)]. Hence M/(A+N) = (CNB)/[N+(ANnB)NC(C]is a
factor module of (CNB)/N. So M/(A+ N) is singular. It follows that M = A+ N.
Since ANN < (ANB)NC <5 M, we get ANN <5 N by [3, Corollary 2.6].
Consequently, N is a §-supplement of A in M with N < B. Therefore M is amply
d-supplemented. O

The next result gives a characterization of §-semiperfect rings in terms of J-
supplemented modules. It is taken from [13, Theorem 3.6] and [9, Theorem 3.3].

Lemma 4.10. The following are equivalent for a ring R:
(1) R is a 6-semiperfect ring.
(2) R/4(R) is a semisimple ring and idempotents lift modulo §(R).

(3) There exists a complete orthogonal set of idempotents ey, ..., e, such that, for
each i, either e; R is a simple R-module or e; R has a unique essential mazximal
submodule.

(4) Ewvery finitely generated R-module is §-supplemented.

(5) FEvery finitely generated projective R-module is §-lifting.

(6) Ewvery finitely generated projective R-module is §-supplemented.
(7)

Rpg is 6-supplemented.



s-Semiperfect Rings and s-Supplemented Modules 299

It is well-known that a ring R is semiperfect if and only if Rp is supplemented
if and only if Rg is amply supplemented.

Corollary 4.11. The following are equivalent for a ring R:
(1) R is §-semiperfect.
(2) Rg is amply §-supplemented.
(3) Ewery finitely generated module is amply §-supplemented.

Proof. (1)<(2) is follows from Theorem 4.4 and Lemma 4.10.
(2)=(3) By Proposition 4.3 and Corollary 4.5.
(3)=(2) Clear. O

Theorem 4.12. Let M be an R-module. Then M is Artinian if and only if M
is amply d-supplemented and satisfies DCC on §-supplement submodules and on
d-small submodules.

Proof. The necessity is clear. Conversely, assume that M is amply d-supplemented
module which satisfies DCC on §-supplement submodules and on §-small submod-
ules. By [10, Proposition 2.6], §(M) is an Artinian module. We next show that
M/6(M) is an Artinian module. Let 6(M) < N; < Ny < --- be an ascend-
ing chain of submodules of M. Since M is amply J-supplemented, there exists
a descending chain K; > Ky > --- of submodules of M such that K; is a J-
supplement of N; in M for each ¢« > 1. By hypothesis, there exists a positive
integer n such that K,, = K,; for each j > 1. Since K; N N; < §(M), we have
M/6(M) = N;/o(M)®(K;4+0(M))/6(M) for each i > n. It follows that N; = N, for
each ¢ > n. Thus M/§(M) is Noetherian, and hence finitely generated. Moreover,
M/6(M) is a semisimple module by [9, Lemma 2.12]. Then M/§(M) is Artinian.
Consequently, M is Artinian. o

Proposition 4.13. Let M be a finitely generated §-supplemented module. Then M
1s Artinian if and only if M satisfies DCC on §-small submodules.

Proof. By [9, Lemma 2.12] and [10, Proposition 2.6]. O

Corollary 4.14. R is a right Artinian ring if and only if R is a d-semiperfect ring
which satisfies DCC on §-small right ideals of R.

Proof. By Corollary 4.11 and Proposition 4.13.
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