KYUNGPOOK Math. J. 55(2015), 289-300 http://dx.doi.org/10.5666/KMJ.2015.55.2.289 pISSN 1225-6951 eISSN 0454-8124 © Kyungpook Mathematical Journal

Some Results on δ -Semiperfect Rings and δ -Supplemented Modules

CIHAT ABDIOĜLU* Department of Mathematics, Karamanoĝlu Mehmetbey University, Yunus Emre Campus, Karaman, Turkey e-mail: cabdioglu@kmu.edu.tr

SERAP ŞAHINKAYA Department of Mathematics, Gebze Institute of Technology, Çayırova Campus, 41400, Gebze- Kocaeli, Turkey e-mail: ssahinkaya@gyte.edu.tr

ABSTRACT. In [9], the author extends the definition of lifting and supplemented modules to δ -lifting and δ -supplemented by replacing "small submodule" with " δ -small submodule" introduced by Zhou in [13]. The aim of this paper is to show new properties of δ -lifting and δ -supplemented modules. Especially, we show that any finite direct sum of δ -hollow modules is δ -supplemented. On the other hand, the notion of amply δ -supplemented modules is studied as a generalization of amply supplemented modules and several properties of these modules are given. We also prove that a module M is Artinian if and only if M is amply δ -supplemented and satisfies Descending Chain Condition (DCC) on δ -supplemented modules. Finally, we obtain the following result: a ring R is right Artinian if and only if R is a δ -semiperfect ring which satisfies DCC on δ -small right ideals of R.

1. Introduction

Throughout this paper, we will assume that R is an associative ring with unity and all modules are unital right R-modules.

We recall some basic notions related to our topic. A submodule N of a module M is called *small in* M, written $N \ll M$, if, whenever M = L + N for any

^{*} Corresponding Author.

Received April 28, 2014; revised September 3, 2014; accepted October 17, 2014.

²⁰¹⁰ Mathematics Subject Classification: 16D10, 16D80, 16D99.

Key words and phrases: δ -small submodules, δ -supplemented modules, δ -lifting modules, amply δ -supplemented modules.

²⁸⁹

submodule L of M, we have L = M. A module M is called *lifting* if, for every submodule N of M, there exists a decomposition $M = A \oplus B$ such that $A \leq N$ and $N \cap B \ll M$ ([11]). In [13], the author defined the notion of δ -small submodules as follows. A submodule N of a module M is called a δ -small submodule, written as $N \ll_{\delta} M$, if, whenever M = N + X with M/X is singular, we have M = X. Following Koşan [9], a module M is called δ -*lifting* if, for every $N \leq M$, there exists a decomposition $M = A \oplus B$ such that $A \leq N$ and $N \cap B$ is δ -small in M. It is obvious that every lifting module is δ -lifting and every singular δ -lifting module is lifting.

Lemma 1.1.([9, Lemma 2.9]) Assume that N and L are two submodules of the module M. Then the following conditions are equivalent :

- (1) M = N + L and $N \cap L$ is δ -small in L.
- (2) M = N + L and for any proper submodule K of L with L/K singular, $M \neq N + K$.

A submodule L of M is called a δ -supplement of N in M if N and L satisfy the conditions in Lemma 1.1. A module M is called δ -supplemented if every submodule of M has a δ -supplement in M (see [9]). It is clear that every supplemented module is δ -supplemented and every singular δ -supplemented module is supplemented.

In Section 2, we give some properties of δ -supplements. We prove that any factor module of a δ -supplemented module is δ -supplemented and that any finite sum of δ -supplemented modules is δ -supplemented.

In Section 3, we give some results of decompositions and direct sums of δ lifting modules. In particular, the main result in the third section shows that if $M = M_1 \oplus M_2$ is a direct sum of δ -lifting modules M_1 and M_2 such that M_i is M_i -projective (i=1,2), then M is a δ -lifting module.

In Section 4, we study the notion of amply δ -supplemented modules as a generalization of amply supplemented modules. Recall that a submodule N of M has amply supplements in M if, for every $L \subset M$ with N+L = M, there is a supplement L' of N with $L' \subset L$. Recall also that a module M is called amply supplemented if all submodules have amply supplements in M. We call a module M amply δ supplemented if for any submodules N and K of M with M = N + K, K contains a δ -supplement of N in M. It is clear that every amply supplemented module is amply δ -supplemented and every singular amply δ -supplemented module is amply supplemented. It is proved in this section that if M is an amply δ -supplemented module such that every δ -supplement submodule of M is a direct summand, then Mis δ -lifting. Recall that a ring R is δ -semiperfect if the module R_R is δ -supplemented (see [9, Theorem 3.3]). We also characterize δ -semiperfect rings in terms of amply δ -supplemented modules.

2. Some Properties of δ -Supplemented Submodules

We start with some general results on δ -small submodules which are taken from

[13, Lemmas 1.2 and 1.3].

Lemma 2.1. Let M be an R-module.

- (1) If $N \ll_{\delta} M$ and M = X + N, then $M = X \oplus Y$ for a projective semisimple submodule Y with $Y \subseteq N$.
- (2) If $K \ll_{\delta} M$ and $f : M \to N$ is a homomorphism, then $f(K) \ll_{\delta} N$. In particular, if $K \ll_{\delta} M \subseteq N$, then $K \ll_{\delta} N$.
- (3) Let $K_1 \subseteq M_1 \subseteq M$, $K_2 \subseteq M_2 \subseteq M$ and $M = M_1 \oplus M_2$. Then $K_1 \oplus K_2 \ll_{\delta} M_1 \oplus M_2$ if and only if $K_1 \ll_{\delta} M_1$ and $K_2 \ll_{\delta} M_2$.

Lemma 2.2. Let A, B and C be submodules of an R-module M. If M = A + B, $B \leq C$, and $C/B \ll_{\delta} M/B$, then $(A \cap C)/(A \cap B) \ll_{\delta} M/(A \cap B)$.

Proof. Let X be a submodule of M such that $A \cap B \leq X$, M/X is singular and $M/(A \cap B) = (A \cap C)/(A \cap B) + X/(A \cap B)$. Then $M = (A \cap C) + X = C + (A \cap X)$ by [4, Lemma 1.24]. Therefore $M/B = C/B + ((A \cap X) + B)/B$. Note that

$$(M/B)/[((A \cap X) + B)/B] \cong (C + (A \cap X))/(B + (A \cap X))$$
$$= ((A \cap C) + B + (A \cap X))/(B + (A \cap X))$$
$$\cong (A \cap C)/((A \cap C) \cap (B + (A \cap X)))$$
$$= (A \cap C)/(A \cap C \cap X)$$
$$\cong ((A \cap C) + X)/X$$
$$= M/X.$$

Since M/X is singular, it follows that $M = (A \cap X) + B$. Now, since M = A + X we get $M = X + (A \cap B) = X$. Hence, $(A \cap C)/(A \cap B) \ll_{\delta} M/(A \cap B)$. \Box

Proposition 2.3. Let M be an R-module.

- (1) Suppose that K and L are submodules of M such that $K \leq L$.
 - (a) If L is a δ -supplement in M, then L/K is a δ -supplement in M/K.
 - (b) If L has a δ -supplement H in M, then (H + K)/K is a δ -supplement of L/K in M/K.
- (2) Let B ≤ C ≤ M be submodules of M. If C/B is a δ-supplement in M/B and B is a δ-supplement in M, then C is a δ-supplement submodule of M.
- (3) Assume that $M = M_1 \oplus M_2$. If A is a δ -supplement of A' in M_1 and B is a δ -supplement of B' in M_2 , then $A \oplus B$ is a δ -supplement of A' \oplus B' in M.

Proof. (1)(a) Let N be a submodule of M such that L + N = M and $L \cap N \ll_{\delta} L$. Therefore L/K + (N+K)/K = M/K and $[L \cap (N+K)]/K = [(L \cap N) + K]/K \ll_{\delta} M/K$ by Lemma 2.1(2).

(b) This can be proved by following the same method as in (a).

(2) Assume that C/B is a δ -supplement of X/B in M/B and B is a δ -supplement of Y in M. Then M/B = (C/B) + (X/B) and $(C/B) \cap (X/B) \ll_{\delta} C/B$. Moreover,

M = B + Y and $B \cap Y \ll_{\delta} B$. Note that $C = C \cap (B + Y) = B + (C \cap Y)$. Since $(C \cap X)/B \ll_{\delta} C/B$, it follows from Lemma 2.2 that $(C \cap X \cap Y)/(B \cap Y) \ll_{\delta} C/(B \cap Y)$. As $B \cap Y \ll_{\delta} C$ we have $(C \cap X \cap Y) \ll_{\delta} C$. Since $X = X \cap (B + Y) = B + (X \cap Y)$, we see that $M = C + X = C + (X \cap Y)$. Therefore C is a δ -supplement of $X \cap Y$ in M.

(3) By assumption, we have $M_1 = A + A'$ and $A \cap A' \ll_{\delta} A$. Moreover, $M_2 = B + B'$ and $B \cap B' \ll_{\delta} B$. Then $M = (A \oplus B) + (A' \oplus B')$. By Lemma 2.1(3), $(A \cap A') \oplus (B \cap B') \ll_{\delta} A \oplus B$. Since $(A \oplus B) \cap (A' \oplus B') = (A \cap A') \oplus (B \cap B')$, it follows that $A \oplus B$ is a δ -supplement of $A' \oplus B'$ in M.

Corollary 2.4. Every factor module of a δ -supplemented module is δ -supplemented. **Lemma 2.5.** Let M_1 and M_2 be submodules of M such that M_1 is δ -supplemented and $M_1 + M_2$ has a δ -supplement in M. Then M_2 has a δ -supplement in M.

Proof. By assumption, there exits a submodule N of M such that $M_1+M_2+N = M$ and $(M_1+M_2)\cap N \ll_{\delta} N$. Moreover, since M_1 is δ-supplemented, $(M_2+N)\cap M_1$ has a δ-supplement in M_1 . Then there exists $L \leq M_1$ such that $M_1 = (M_2+N)\cap M_1+L$ and $(M_2+N)\cap L \ll_{\delta} L$. Then we have $M = M_1 + M_2 + N = (M_2+N)\cap M_1 + L + M_2 + N = M_2 + (L+N)$. Moreover, we have $M_2 \cap (L+N) \leq [(M_2+L)\cap N] + [(M_2+N)\cap L] \leq [(M_2+M_1)\cap N] + [(M_2+N)\cap L]$. Now, it follows that $M_2 \cap (L+N) \ll_{\delta} (L+N)$. Hence, L+N is a δ-supplement of M_2 in M. □

Proposition 2.6. Any finite sum of δ -supplemented modules is δ -supplemented.

Proof. We prove it for two modules; the finite case can be proved similarly. Let M_1 and M_2 be two submodules of a module M such that $M = M_1 + M_2$ and M_1 and M_2 are δ -supplemented. It is easily seen that for every submodule N of M, $M_1 + (M_2 + N)$ has a δ -supplement in M. Hence by Lemma 2.5, $M_2 + N$ has a δ -supplement in M. Applying Lemma 2.5 again we conclude that N has a δ -supplement in M.

Corollary 2.7. Let M be a δ -supplemented module. Then every finitely M-generated module is δ -supplemented.

Proof. By Corollary 2.4 and Proposition 2.6.

Recall that an *R*-module *M* is said to be *hollow* (respectively δ -*hollow*) if every proper submodule of *M* is small (respectively δ -small) in *M*. It is clear that every hollow module is δ -hollow. In [3], the author called a module *M* δ -*local* if, $\delta(M) \ll_{\delta} M$ and $\delta(M)$ is a maximal submodule of *M*. Moreover, the author also shows in [3] that a local module needs not to be δ -local in general.

Proposition 2.8. Let M be a δ -hollow module. Then $\delta(M) = M$ or M is a local and a δ -local module.

Proof. Suppose that $\delta(M) \neq M$. Then $\delta(M) \ll_{\delta} M$ and $Rad(M) \neq M$ since $Rad(M) \leq \delta(M)$ (see [13, Lemma 1.5(1)]). Let N be a maximal submodule of M. By hypothesis, we have $N \ll_{\delta} M$. Therefore $N \leq \delta(M)$. It follows that $\delta(M) = N$. Then $Rad(M) = \delta(M)$ is the only maximal submodule of M. Consequently, M is a

 δ -local module. On the other hand, it is easy to see that $\delta(M)$ is small in M. This implies that M is a local module.

The proof of the following two results are clear.

Proposition 2.9. Let K be a δ -hollow submodule of the module M. Then K is a δ -supplement of each proper submodule L of M such that K + L = M.

Proposition 2.10. Every δ -hollow module is δ -supplemented.

Corollary 2.11. Any finite sum of δ -hollow modules is δ -supplemented.

Proof. It can be obtained by using Propositions 2.6 and 2.10.

Recall that a module M is called *cofinitely* δ -supplemented if every submodule N of M such that M/N is finitely generated has a δ -supplement in M.

Also recall that a module is called *coatomic* if every proper submodule is contained in a maximal one.

Proposition 2.12. Let M be a coatomic module. Then the following are equivalent:

- (i) M is cofinitely δ -supplemented.
- (ii) Every maximal submodule of M has a δ -supplement.
- (iii) $M = \sum_{i \in I} H_i$ where each H_i is either simple or δ -local.

Proof. The equivalences clearly hold if M is semisimple. So, assume that M is not semisimple.

 $(i) \Rightarrow (ii)$ Clear.

(ii) \Rightarrow (iii) Let K be the sum of all δ -supplement submodules of maximal submodules L of M with $Soc(M) \leq L$. By [3, Lemma 3.4], K is a sum of δ -local submodules of M. Suppose that $M \neq Soc(M) + K$. Then there is a maximal submodule N of M such that $Soc(M) + K \leq N$. By hypothesis, N has a δ -supplement H in M. Thus $H \leq K \leq N$ and N = M, a contradiction. It follows that M = Soc(M) + K, and the proof is complete.

(iii) \Rightarrow (i) It follows from [1, Proposition 2.5] and [3, Lemma 3.3].

Corollary 2.13. If M is a coatomic δ -supplemented module, then $M = \sum_{i \in I} H_i$ where each H_i is either simple or δ -local.

Proof. This is clear by Proposition 2.12.

3. Decompositions and Direct Sums of δ -Lifting Modules

Following [13], a projective module P is called a *projective* δ -cover of a module M if there exists an epimorphism $f: P \to M$ with $Ker(f) \ll_{\delta} P$, and a ring R is called δ -semiperfect if every simple R-module has a projective δ -cover. In [9], it is proved that a ring R is δ -semiperfect if and only if the R-module R_R is δ -supplemented. The following example shows that a δ -lifting module need not be lifting.

Π

Example 3.1. Let F be a field, $I = \begin{pmatrix} F & F \\ 0 & F \end{pmatrix}$ and $R = \{(x_1, x_2, ..., x_n, x, x, ...) | <math>n \in \mathbb{N}, x_i \in \mathbb{M}_2(F), x \in I\}$. By [13, Example 4.3], the ring R is δ -semiperfect and $\delta(R) = \{(x_1, x_2, ..., x_n, x, x, ...) | n \in \mathbb{N}, x_i \in \mathbb{M}_2(F), x \in J\}$ where $J = \begin{pmatrix} 0 & F \\ 0 & 0 \end{pmatrix}$. Therefore the module R_R is δ -lifting by [13, Lemma 2.4 and Theorem 3.6].

On the other hand, by [13, Example 4.3], R is not semiregular. Hence R_R is not supplemented. Thus R_R is not lifting.

Lemma 3.2.(See [9, Lemma 2.3])

- (1) The following conditions are equivalent for a module M:
 - (a) M is δ -lifting.
 - (b) For every $N \leq M$, there exists a decomposition $N = A \oplus B$ such that A is a direct summand of M and $B \ll_{\delta} M$.
- (2) If M is δ -lifting, then any direct summand of M is δ -lifting.

Proposition 3.3. Let M be an indecomposable module. Then M is δ -lifting if and only if M is δ -hollow.

Proof. Let M be a δ -lifting indecomposable module. Let N be a proper submodule of M. Since M is δ -lifting, we have a decomposition $M = A \oplus B$ such that $A \leq N$ and $N \cap B$ is δ -small in B for some submodules A and B of M. Since M is indecomposable and $N \neq M$, we have A = 0, and so M = B. Therefore $N \ll_{\delta} M$. Hence, M is δ -hollow. The converse is clear. \Box

Proposition 3.4.

- (1) If M is a δ -lifting module, then $M/\delta(M)$ is a semisimple module.
- (2) If M is a δ -lifting module, then any submodule N of M with $N \cap \delta(M) = 0$ is semisimple.
- (3) If the module R_R is δ -lifting, then $M/\delta(M)$ is a semisimple module for every R-module M.

Proof. (1) See [9, Lemma 2.12].

(2) Since $N \cong (N \oplus \delta(M))/\delta(M) \leq M/\delta(M)$ is semisimple by (1), then N is semisimple.

(3) Let M be an R-module. By hypothesis and (1), $R/\delta(R)$ is a semisimple ring. But, on the other hand $M\delta(R) = \delta(M)$ by [13, Theorem 1.8]. Thus, $M/\delta(M)$ is a semisimple module.

In [9, Example 2.4], it is proved that if $R = \mathbb{Z}_8$, then the *R*-module $M = R \oplus (2R/4R)$ is not δ -lifting, although the *R*-modules R_R and $(2R/4R)_R$ are δ -lifting. The following result deals with a special case of a direct sum of two δ -lifting modules.

The following theorem may be seen in the literature but we want to give it here for the readers.

Theorem 3.5. Let $M = M_1 \oplus M_2$. If M_1 and M_2 are δ -lifting modules such that M_i is M_i -projective (i=1,2), then M is a δ -lifting module.

Proof. Let $N \leq M$. Since M_1 is δ -lifting, there exist submodules K and K' of M_1 such that $M_1 = K \oplus L$, $K \leq M_1 \cap (N + M_2)$ and $L \cap (N + M_2) \ll_{\delta} M_1$. Therefore $M = K \oplus L \oplus M_2 = N + (L \oplus M_2)$. On the other hand, since M_2 is δ -lifting, there exist submodules X and Y of M_2 such that $M_2 = X \oplus Y$, $X \leq M_2 \cap (N + L)$ and $Y \cap (N + L) \ll_{\delta} M_2$. Hence $M = (X \oplus K) \oplus (L \oplus Y)$ and $M = N + (L \oplus Y)$. Since M_i is M_j -projective, $X \oplus K$ is $(L \oplus Y)$ -projective by [11, Propositions 4.32 and 4.33]. Then there exists a submodule N_1 of N such that $M = N_1 \oplus (L \oplus Y)$. Then we have $N \cap (L \oplus Y) \leq Y \cap (N + L) + L \cap (N + Y)$. But $Y \cap (N + L) \ll_{\delta} M_2$ and $L \cap (N + M_2) \ll_{\delta} M_1$. Thus, $N \cap (L \oplus Y) \ll_{\delta} M$ by Lemma 2.1.

Corollary 3.6. Let $M = M_1 \oplus M_2$. If M_1 and M_2 are δ -lifting projective modules, then M is δ -lifting.

Proof. This is clear by Theorem 3.5.

Corollary 3.7. Let R be a δ -semiperfect ring. Then every free module of finite rank is δ -lifting.

Proof. This is clear by Corollary 2.6.

Theorem 3.8. (i) If M is a δ -lifting module, then M has a decomposition $M = M_1 \oplus M_2$ such that M_1 is semisimple, M_2 is δ -lifting and $\delta(M_2)$ is an essential submodule of M_2 .

(ii) If M is a δ -lifting module, then M has a decomposition $M = M_1 \oplus M_2$ such that M_1 and M_2 are δ -lifting modules, $\delta(M_1) = M_1$ and $\delta(M_2) \ll_{\delta} M_2$.

Proof. (i) This is by [9, Proposition 2.13] and Lemma 3.2(2).

(ii) Since M is δ -lifting, there exists a decomposition $M = M_1 \oplus M_2$ such that $M_1 \leq \delta(M)$ and $\delta(M) \cap M_2 \ll_{\delta} M_2$. Now, $\delta(M) = \delta(M_1) \oplus \delta(M_2)$ implies that $\delta(M) \cap M_2 = \delta(M_2) \oplus (M_2 \cap \delta(M_1)) = \delta(M_2) \ll_{\delta} M_2$. On the other hand, $\delta(M) \cap M_1 = M_1 = \delta(M_1) \oplus (M_1 \cap \delta(M_2)) = \delta(M_1)$. Moreover, M_1 and M_2 are δ -lifting by Lemma 3.2(2). \Box

Proposition 3.9. If M is a δ -lifting module such that $\delta(M)$ has a supplement in M, then we have a decomposition $M = M_1 \oplus M_2$ such that M_1 is a lifting module and M_2 is δ -lifting with $\delta(M_2) = M_2$.

Proof. Assume that M is δ -lifting and let A be a supplement of $\delta(M)$ in M. Then we have a decomposition $M = M_1 \oplus M_2$ such that $A = M_1 \oplus (M_2 \cap A)$ and $M_2 \cap A \ll_{\delta} M_2$. Let N be a submodule of M_1 . Since M_1 is a δ -lifting module by Lemma 3.2(2), we have a decomposition $M_1 = X \oplus Y$ such that $N = X \oplus (Y \cap N)$ and $Y \cap N \ll_{\delta} Y$. Since $A \cap \delta(M) \ll A$ and $Y \cap N \leq \delta(M) \cap A$, we obtain that $Y \cap N \ll A$. Hence $Y \cap N \ll Y$ by [11, Lemma 4.2(2)]. Therefore M_1 is a lifting module. Moreover, we have $M = \delta(M_2) + \delta(M_1) + M_1 = \delta(M_2) \oplus M_1$. This gives $\delta(M_2) = M_2.$

4. Amply δ -Supplemented Modules

In this section we study the notion of amply δ -supplemented modules. Several properties of this type of modules are proved. Recall that a module M is amply δ -supplemented if for any submodules N and K of M with M = N + K, K contains a δ -supplement of N in M. It is clear that every amply δ -supplemented module is δ -supplemented.

Lemma 4.1. Let M be an R-module. If every submodule of M is δ -supplemented, then M is amply δ -supplemented.

Proof. Let A and B be submodules of M such that M = A + B. Since A is δ -supplemented and $A \cap B \leq A$, there is a submodule $C \leq A$ such that $A \cap B + C = A$ and $A \cap B \cap C \ll_{\delta} C$. Therefore C + B = M. Since $C \cap B = C \cap B \cap A \ll_{\delta} C$, C is a δ -supplement of B in M. It follows that M is amply δ -supplemented. \Box

Proposition 4.2. If M is an amply δ -supplemented module such that every δ -supplement submodule of M is a direct summand, then M is a δ -lifting module.

Proof. Let N be a submodule of M. By assumption, N has a δ -supplement K and K has a δ -supplement L such that $L \leq N$ and L is a direct summand of M. Then $M = L \oplus T = L + K$ for some submodule T of M. Note that $N = L \oplus (N \cap T) = L + (N \cap K)$. Let π denote the canonical projection $\pi : L \oplus T \to T$. Then $\pi(N) = \pi(N \cap K) = N \cap T$. Since K is a δ -supplement of N, we have $N \cap K \ll_{\delta} K$. Hence $\pi(N \cap K) = N \cap T \ll_{\delta} T$ by Lemma 2.1(2). Consequently, M is a δ -lifting module by Lemma 3.2.

Proposition 4.3. Any epimorphic image of an amply δ -supplemented module is again amply δ -supplemented.

Proof. Let M be an amply δ -supplemented module and let $f: M \to N$ be an epimorphism, where N is an R-module. Let N = A + B. Then $f^{-1}(N) = M = f^{-1}(A) + f^{-1}(B)$. Since M is an amply δ -supplemented module, there is a submodule $X \leq f^{-1}(B)$ such that $M = f^{-1}(A) + X$ and $f^{-1}(A) \cap X \ll_{\delta} X$. Hence N = f(M) = A + f(X) and $A \cap f(X) = f(f^{-1}(A) \cap X) \ll_{\delta} f(X)$ by Lemma 2.1(2). This implies that f(X) is a δ -supplement of A in M. Moreover, we have $f(X) \leq B$. Therefore N is amply δ -supplemented. \Box

Recall that a module M is called π -projective if for every two submodules Nand L of M with M = N + L, there exists an endomorphism α of M such that $\alpha(M) \leq N$ and $(1 - \alpha)(M) \leq L$. It is well known that π -projective supplemented modules are amply supplemented. Next we prove an analogue for this result.

Theorem 4.4. Let M be a π -projective module. If M is δ -supplemented, then M is amply δ -supplemented.

Proof. Let M = N + K. Then there exists $\alpha \in End(M)$ such that $\alpha(M) \leq N$ and

296

 $(1-\alpha)(M) \in K$. Since M is δ -supplemented, there exists a submodule $L \leq M$ such that M = N + L and $N \cap L \ll_{\delta} L$. Clearly, $(1-\alpha)(L) \leq K$ and $M = N + (1-\alpha)(L)$. Since $N \cap L \ll_{\delta} L$, then $N \cap (1-\alpha)(L) = (1-\alpha)(N \cap L) \ll_{\delta} (1-\alpha)(L)$. So M is amply δ -supplemented. \Box

Corollary 4.5. Let $M_1, M_2, ..., M_k$ be submodules of a projective module M such that $M = \bigoplus_{i=1}^{k} M_i$. The following are equivalent:

- (i) M is amply δ -supplemented.
- (ii) For every *i* $(1 \le i \le k)$, M_i is amply δ -supplemented.

Proof. (i) \Rightarrow (ii) By Proposition 4.3.

(ii) \Rightarrow (i) Since for every $1 \le i \le k$, M_i is amply δ -supplemented, it follows from Proposition 2.6 that $M = \bigoplus_{i=1}^{k} M_i$ is δ -supplemented. By Theorem 4.4, M is amply δ -supplemented. \Box

Proposition 4.6. Let M be an amply δ -supplemented module. Assume that for every submodule K of M such that $K = K_1 \cap K_2$ where K_1 and K_2 are δ -supplement submodules in M with $M = K_1 + K_2$, every homomorphism $\beta : M \to M/K$ can be lifted to a homomorphism $\gamma : M \to M$. Then M is π -projective.

Proof. Let A and B be submodules of M with M = A + B. Since M is an amply δ -supplemented module, there exist two submodules $B' \leq B$ and $A' \leq A$ such that M = A + B' = A' + B', $A \cap B' \ll_{\delta} B'$ and $A' \cap B' \ll_{\delta} A'$. Now, we consider the homomorphism $\beta : M \to M/(A' \cap B')$ defined by $\beta(a' + b') = b' + A' \cap B'$, where $a' \in A'$ and $b' \in B'$. By hypothesis, β can be lifted to a homomorphism $\alpha : M \to M$. Moreover, we have $\alpha(M) \leq B'$ and $(1 - \alpha)(M) \leq A'$. Hence M is π -projective.

Let M be a module and $B \leq A \leq M$. If $A/B \ll M/B$ then B is called a *coessential submodule* of A in M. If A has no proper coessential submodule in M, then A is called *coclosed* in M (see [8]).

If $A/B \ll_{\delta} M/B$ and A/B is singular, then B will be called a δ -coessential submodule of A. If A has no proper δ -coessential submodule in M, then A is called δ -coclosed in M (see [3]). Clearly, every δ -coclosed submodule is coclosed.

Note that every δ -supplement submodule of a module M is δ -coclosed by [3, Corollary 2.6].

Let $K \leq N \leq M$. The submodule K is said to be a δ -coclosure of N in M if K is a δ -coessential submodule of N and K is δ -coclosed in M.

Proposition 4.7. Let M be a δ -lifting module. Then every singular δ -coclosed submodule of M is a direct summand.

Proof. Let N be a singular δ -coclosed submodule of M. Since M is δ -lifting, there exist submodules M_1 and M_2 of M such that $M = M_1 \oplus M_2$, $M_1 \leq N$ and

 $N \cap M_2 \ll_{\delta} M$. Therefore $N = M_1 \oplus (N \cap M_2)$ and $N \cap M_2 \ll_{\delta} N$ by [3, Corollary 2.6]. It follows that $N = M_1$ since N/M_1 is singular.

Lemma 4.8. Let M be an amply δ -supplemented module. Then every submodule N of M has a δ -coclosure in M.

Proof. The proof is clear.

A module M is called *weakly* δ -supplemented if for every submodule $N \leq M$, there exists a submodule $K \leq M$ such that M = N + K and $N \cap K \ll_{\delta} M$. It is clear that every δ -supplemented module is weakly δ -supplemented. \Box

Proposition 4.9. A module M is amply δ -supplemented if and only if M is weakly δ -supplemented and every submodule of M has a δ -coclosure in M.

Proof. (\Rightarrow) This is clear by Lemma 4.8.

(⇐) Suppose that M is weakly δ -supplemented and every submodule of M has a δ -coclosure in M. Let A and B be two submodules of M such that M = A + B. Since M is weakly δ -supplemented, there exists a submodule C of M such that $(A \cap B) + C = M$ and $(A \cap B) \cap C \ll_{\delta} M$. Then $(A \cap B) + (C \cap B) = B$. Thus $A + (C \cap B) = M$ by [4, Lemma 1.24]. Let N be a δ -coclosure of $C \cap B$ in M. Then $(C \cap B)/N$ is singular, N is δ -coclosed in M and $(C \cap B)/N \ll_{\delta} M/N$. On the other hand, we have $[(A + N)/N] + (C \cap B)/N = M/N$ and $M/(A + N) \cong (C \cap B)/[(C \cap B) \cap (A + N)]$. Hence $M/(A + N) \cong (C \cap B)/[N + (A \cap B) \cap C]$ is a factor module of $(C \cap B)/N$. So M/(A + N) is singular. It follows that M = A + N. Since $A \cap N \leq (A \cap B) \cap C \ll_{\delta} M$, we get $A \cap N \ll_{\delta} N$ by [3, Corollary 2.6]. Consequently, N is a δ -supplement of A in M with $N \leq B$. Therefore M is amply δ -supplemented.

The next result gives a characterization of δ -semiperfect rings in terms of δ -supplemented modules. It is taken from [13, Theorem 3.6] and [9, Theorem 3.3].

Lemma 4.10. The following are equivalent for a ring R:

- (1) R is a δ -semiperfect ring.
- (2) $R/\delta(R)$ is a semisimple ring and idempotents lift modulo $\delta(R)$.
- (3) There exists a complete orthogonal set of idempotents $e_1, ..., e_n$ such that, for each *i*, either e_iR is a simple *R*-module or e_iR has a unique essential maximal submodule.
- (4) Every finitely generated R-module is δ -supplemented.
- (5) Every finitely generated projective R-module is δ -lifting.
- (6) Every finitely generated projective R-module is δ -supplemented.
- (7) R_R is δ -supplemented.

It is well-known that a ring R is semiperfect if and only if R_R is supplemented if and only if R_R is amply supplemented.

Corollary 4.11. The following are equivalent for a ring R:

- (1) R is δ -semiperfect.
- (2) R_R is amply δ -supplemented.
- (3) Every finitely generated module is amply δ -supplemented.
- *Proof.* (1) \Leftrightarrow (2) is follows from Theorem 4.4 and Lemma 4.10. (2) \Rightarrow (3) By Proposition 4.3 and Corollary 4.5. (3) \Rightarrow (2) Clear.

Theorem 4.12. Let M be an R-module. Then M is Artinian if and only if M is amply δ -supplemented and satisfies DCC on δ -supplement submodules and on δ -small submodules.

Proof. The necessity is clear. Conversely, assume that M is amply δ -supplemented module which satisfies DCC on δ -supplement submodules and on δ -small submodules. By [10, Proposition 2.6], $\delta(M)$ is an Artinian module. We next show that $M/\delta(M)$ is an Artinian module. Let $\delta(M) \leq N_1 \leq N_2 \leq \cdots$ be an ascending chain of submodules of M. Since M is amply δ -supplemented, there exists a descending chain $K_1 \geq K_2 \geq \cdots$ of submodules of M such that K_i is a δ supplement of N_i in M for each $i \geq 1$. By hypothesis, there exists a positive integer n such that $K_n = K_{n+j}$ for each $j \geq 1$. Since $K_i \cap N_i \leq \delta(M)$, we have $M/\delta(M) = N_i/\delta(M) \oplus (K_i + \delta(M))/\delta(M)$ for each $i \geq n$. It follows that $N_i = N_n$ for each $i \geq n$. Thus $M/\delta(M)$ is Noetherian, and hence finitely generated. Moreover, $M/\delta(M)$ is a semisimple module by [9, Lemma 2.12]. Then $M/\delta(M)$ is Artinian. Consequently, M is Artinian. \Box

Proposition 4.13. Let M be a finitely generated δ -supplemented module. Then M is Artinian if and only if M satisfies DCC on δ -small submodules.

Proof. By [9, Lemma 2.12] and [10, Proposition 2.6].

Corollary 4.14. *R* is a right Artinian ring if and only if *R* is a δ -semiperfect ring which satisfies DCC on δ -small right ideals of *R*.

Proof. By Corollary 4.11 and Proposition 4.13.

Acknowledgements. We would like to express our gratefulness to the referee for his/her valuable suggestions and contributions.

References

 K. Al-Takhman, Cofinitely δ-supplemented abd cofinitely δ-semiperfect modules, International Journal of Algebra, 1(12)(2007), 601-613.

- [2] F. W. Anderson and K. R. Fuller, *Rings and Categories of Modules*, Springer-Verlag, New York, (1974).
- [3] E. Büyükaşık and C. Lomp, When δ-semiperfect rings are semiperfect, Turkish J. Math., 34(2010), 317-324.
- [4] J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, *Lifting modules*, (2006) Birkhauser, Basel.
- [5] A. Idelhadj and R. Tribak, A dual notion of CS-modules generalization, Algebra and Number Theory (Fcz) (M. Boulagouaz and J.P. Tignol, eds.), Lecture Note of Pure and Appl. Math., 208, Marcel Dekker, New York 2000 pp. 149-155.
- [6] A. Idelhadj and R. Tribak, Modules for which every submodule has a supplement that is a direct summand, Arab. J. Sci. Eng. Sect. C Theme Issues, 25(2)(2000), 179-189.
- [7] A. Idelhadj and R. Tribak, On some properties of ⊕-supplemented modules, IJMMS 69(2003), 4373-4387.
- [8] D. Keskin, On lifting modules, Comm. Alg., 28(7)(2000), 3427-3440.
- [9] M. T. Koşan, δ -lifting and δ -supplemented modules, Alg. Colloq., 14(1)(2007), 53-60.
- [10] M. T. Koşan and A. Ç. Özcan, δ-M-small and δ-Harada modules, Comm. Alg., 36(2)(2008), 423-433.
- [11] S. H. Mohamed and B. J. Müller, Continuous and discret modules, London Math. Soc. LNS 147 Cambridge Univ. Press, Cambridge, 1990.
- [12] R. Tribak, On cofinitely lifting and cofinitely weak lifting modules, Comm. Alg., 36(12)(2008), 4448-4460.
- [13] Y. Zhou, Generalizations of perfect, semiperfect and semiregular rings, Alg. Colloq., 7(3)(2000), 305-318.