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Abstract. A subset S of V (G), where G is a graph without isolated vertices, is a dou-

ble dominating set of G if for each x ∈ V (G), |NG [x] ∩ S| ≥ 2. This paper, shows that

any positive integers a, b and n with 2 ≤ a < b, b ≥ 2a and n ≥ b + 2a − 2, can be

realized as domination number, double domination number and order, respectively. It

also characterize the double dominating sets in the Cartesian and tensor products of two

graphs and determine sharp bounds for the double domination numbers of these graphs.

In particular, it show that if G and H are any connected non-trivial graphs of orders n and

m respectively, then γ×2(G2H) ≤ min {mγ2(G), nγ2(H)}, where γ2, is the 2-domination

parameter.

1. Introduction

Let G = (V (G), E(G)) be a graph. For any vertex x ∈ V (G), the open neighbor-
hood of x is the set NG(x) = {y ∈ V (G) : xy ∈ E(G)} and the closed neighborhood
of x in G is the set NG[x] = NG(x) ∪ {x}. If X ⊆ V (G), the open neighborhood of
X in G is the set NG(X) =

⋃
x∈X NG(x). The closed neighborhood of X in G is the

set NG[X] = NG(X) ∪X.
A subset S of V (G) is a dominating set in G if NG[S] = S ∪ NG(S) = V (G)
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where NG(S) = {v ∈ V (G) : xv ∈ E(G) for some x ∈ S}. Equivalently, a subset S
of V (G) is a dominating set in G if for every v ∈ V (G) \ S, there exists x ∈ S
such that xv ∈ E(G). The minimum cardinality of a dominating set in G, denoted
by γ(G), is the domination number of G. Moreover, a subset S of V (G) is a 2-
dominating set of the graph G, if every vertex v ∈ V (G) \ S is adjacent to at least
2 vertices in S. The 2-domination number γ2(G) is the minimum cardinality of a
2-dominating set of G. A 2-dominating set of G with cardinality γ2(G) is called a
γ2-set.

Let G = (V (G), E(G)) be a graph with no isolated vertices. A subset S of
V (G) is a double dominating set of G if for each x ∈ V (G), |NG [x] ∩ S| ≥ 2. The
double domination number of G, denoted by γ×2(G), is the minimum cardinality
of a double dominating set of G. A double dominating set of G with cardinality
γ×2(G) is called a γ×2-set.

Double dominating set and double domination number were first defined and
introduced by F. Harary and T. W. Haynes in [4] {as cited in [5]}. They also estab-
lished the Nordhaus-Gaddum inequalities for double domination. Blidia, Chellali
and Haynes [2] characterized the trees having equal paired and double domination
number. Atapour, Khodkar and Sheikholeslami [1] established upper bounds on
the double domination subdivision number (the minimum number of edges that
must be subdivided in order to increase the γ×2(G)) for arbitrary graphs in terms
of vertex degree. Khelifi et al. [6] studied the concept in relation to γ×2-critical
graphs (the removal of any edge which increases the γ×2(G)). Cuivillas and Canoy
[3] characterized and determined sharp bounds for the double dominating sets in
the join, corona and lexicographic product of two graphs.

2. Realization Problem

It is shown in [3] that 1 + γ(G) ≤ γ×2(G) for any graph G without isolated
vertices. Also, by a remark in [3], for any graph G of order n ≥ 2 without isolated
vertices, 2 ≤ γ×2(G) ≤ n. Thus, the following remark is immediate.

Remark 2.1. For any non-trivial graph G, γ(G) < γ×2(G) ≤ |V (G)|.

Theorem 2.2. Given positive integers a, b and n with 2 ≤ a < b, b ≥ 2a and
n ≥ b + 2a − 2, there exists a connected graph G with γ(G) = a, γ×2(G) = b and
|V (G)| = n.

Proof. Consider the following cases:
Case 1. b = 2a and n ≥ b + 2a− 2

Suppose a = 2. Then b = 4. Let H be a path [x1, y1, v1, x2] and let G1 be a
graph obtained from H by adding the vertices zi for i = 1, 2 and the edges z1y1,
z2v1, and zixi for i = 1, 2. Moreover, let G2 be a graph obtained from G1 by adding
the paths [x1, um, z1] for m = 1, 2, ..., n-b-2a+2 (see Figure 1). Then the set {x1, x2}
is a minimum dominating set of G1 and G2. Hence γ(G1) = γ(G2) = 2 = a. Also,
a minimum double dominating set of G1 and G2 is the set {x1, x2}∪{z1, z2}. Thus
γ×2(G1) = γ×2(G2) = 2 + 2 = 2a = b. Now if n = b + 2a − 2 then n = 6. Thus
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take G = G1, where |V (G1)| = 2 + 2 + 1 + 1 = n. If not, take G = G2, where
|V (G2)| = 2 + 2 + 1 + 1 + (n− b− 2a + 2) = n− b + 4 = n.

Figure 1: Graphs G1 and G2

Suppose now that a > 2. Let Pa be the path [x1, x2, ..., xa−1, xa] and let G3 be
the graph obtained from Pa by adding the vertices zi for i = 1, 2, ..., a and replacing
the edges xixi+1 by the paths [xi, yi, vi+1, xi+1] for i = 1, 2, ..., a − 1, then adding
the edges zixi for i = 1, 2, ..., a, zjyj for j = 1, 2, ..., a−1, and zkvk for k = 2, 3, ..., a.
Moreover, let G4 be the graph obtained from G3 by adding the paths [x1, um, z1]
for m = 1, 2, ..., n− b− 2a + 2 (see Figure 2). Then the set {x1, x2, ..., xa−1, xa} is
a minimum dominating set of G3 and G4, while a minimum double dominating set
of G3 and G4 is the set {x1, x2, ..., xa−1, xa} ∪ {z1, z2, ..., za−1, za}. Hence γ(G3) =
γ(G4) = a and γ×2(G3) = γ×2(G4) = a + a = 2a = b. Now if n = b + 2a− 2, then
take G = G3, where |V (G3)| = a+a+(a−1)+(a−1) = 4a−2 = n. If n > b+2a−2,
then take G = G4, where |V (G4)| = a + a + (n− b− 2a + 2) + (a− 1) + (a− 1) = n.

Figure 2: Graphs G3 and G4

Case 2. b > 2a and n ≥ b + 2a− 2
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Suppose a = 2. Consider the graph G5 obtained from G1 in Figure 1 by adding
the vertices wl and the edges z2wl for l = 1, 2, ..., b− 2a. Also, let G6 be the graph
obtained from G5 by adding the paths [x1, um, z1] for m = 1, 2, ..., n − b − 2a + 2
(see Figure 3). Then the set {z1, z2} is a γ-set of G5 and G6. Hence, γ(G5) =
γ(G6) = 2 = a. Also, a minimum double dominating set of G5 and G6 is the
set {x1, x2} ∪ {z1, z2} ∪ {w1, w2, ..., wb−2a}. Thus, γ×2(G5) = γ×2(G6) = 2 + 2 +
b − 2a = b. Now if n = b + 2a − 2, then n = b + 2. Hence take G = G5 where
|V (G5)| = 2 + 2 + 1 + 1 + (b − 2a) = b + 2 = n. If not, take G = G6 where
|V (G6)| = 2 + 2 + 1 + 1 + (b− 2a) + (n− b− 2a + 2) = n.

Figure 3: Graphs G5 and G6

Now suppose a > 2. Consider the graph G7 obtained from G3 in Figure 2
by adding the vertices wl and the edges zawl for l = 1, 2, ..., b − 2a. Moreover,
let G8 be the graph obtained from G7 by adding the paths [x1, um, z1] for m =
1, 2, ..., n − b − 2a + 2 (see Figure 4). Then the set {z1, z2, ..., za−1, za} is a γ-set
of G7 and G8 while a minimum double dominating set of G7 and G8 is the set
{x1, x2, ..., xa−1, xa} ∪ {z1, z2, ..., za−1, za} ∪ {w1, w2, ..., wb−2a}. Hence, γ(G7) =
γ(G8) = a and γ×2(G7) = γ×2(G8) = a + a + (b− 2a) = b. Now, if n = b + 2a− 2,
then take G = G7. If n > b + 2a − 2, then take G = G8, where |V (G7)| =
a + a + (b − 2a) + (a − 1) + (a − 1) = b + 2a − 2 = n and |V (G8)| = a + a + (n −
b− 2a + 2) + (b− 2a) + (a− 1) + (a− 1) = n.

This proves the assertion. 2

3. Double Domination in the Cartesian Product of Graphs

The Cartesian product G2H of two graphs G and H is the graph with vertex-set
V (G2H) = V (G)×V (H) and edge-set E(G2H) satisfying the following conditions:
(u, v)(u′, v′) ∈ E(G2H) if and only if either uu′ ∈ E(G) and v = v′ or u = u′ and
vv′ ∈ V (H).

Theorem 3.1. Let G and H be connected non-trivial graphs. Then C =⋃
x∈S [{x} × Tx], where S ⊆ V (G) and Tx ⊆ V (H) for every x ∈ S, is a dou-

ble dominating set of G2H if and only if the following properties hold:

(i) Tx is a double dominating set in H for each x ∈ S \N(S);
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Figure 4: Graphs G7 and G8

(ii) For each x ∈ S ∩ N(S) and for each a ∈ V (H) \ NH [Tx], there exist y, z ∈
NG(x) ∩ S such that a ∈ Ty ∩ Tz;

(iii) For each x ∈ S ∩N(S) and for each a ∈ NH [Tx], one of the following holds:

(a) a ∈ Tx and either |NH [a] ∩ Tx| ≥ 2 or a ∈ Ty for some y ∈ NG(x) ∩ S;

(b) a /∈ Tx and |NH(a) ∩ Tx| ≥ 2 or a ∈ Ty for some y ∈ NG(x) ∩ S and
|NH(a) ∩ Tx| ≥ 1 or a ∈ Ty ∩ Tz for some y, z ∈ NG(x) ∩ S (y 6= z);
and

(iv) For each x ∈ V (G) \ S and for each a ∈ V (H), there exist y, z ∈ NG(x) ∩ S,
where y 6= z, such that a ∈ Ty ∩ Tz.

Proof. Suppose C is a double dominating set of G2H. Let x ∈ S \ N(S)
and let q ∈ V (H). If q /∈ Tx, then (x, q) /∈ C. Since C is a double domi-
nating set of G2H, there exist distinct vertices (y, b) and (z, c) in C such that
(x, q)(y, b), (x, q)(z, c) ∈ E(G2H). Since x /∈ N(S), it follows that x = y = z. Thus
b, c ∈ NH(q) ∩ Tx. If q ∈ Tx, then (x, q) ∈ C. Since C is a total dominating set,
there exist of G2H, there exists (y, a) ∈ C such that (x, q)(y, a) ∈ E(G2H). Since
x /∈ N(S), it follows that x = y and aq ∈ E(H). Hence a ∈ Tx and aq ∈ E(H). In
any case, |NH [q] ∩ Tx| ≥ 2, showing that Tx is a double dominating set in H.

Next, let x ∈ S ∩ N(S) and let a ∈ V (H) \ NH(Tx). Since C is a dou-
ble dominating set, there exist distinct vertices (y, b) and (z, c) in C such that
(x, a)(y, b), (x, a)(z, c) ∈ E(G2H). Since a /∈ NH(Tx), a = b = c and xy, xz ∈
E(G). This implies that y, z ∈ NG(x) ∩ S and a ∈ Ty ∩ Tz.

Now, let x ∈ S ∩N(S) and let a ∈ NH [Tx]. If a ∈ Tx, then (x, a) ∈ C. Since C
is a total dominating set, there exists (y, b) ∈ C such that (x, a)(y, b) ∈ E(G2H).
Hence x = y and ab ∈ E(H) or xy ∈ E(G) and a = b. Thus |NH [a] ∩ Tx| ≥ 2 or
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a ∈ Ty for some y ∈ NG(x) ∩ S. Suppose a /∈ Tx. Then a ∈ N(Tx) and (x, a) /∈ C.
Since C is a double dominating set of G2H, there exist (y, b), (z, c) ∈ C such that
(y, b), (z, c) ∈ NG2H((x, a)). If x = y = z, then b, c ∈ Tx ∩NH(a). If either y or z is
not x, say x 6= y, then xy ∈ E(G) and a = b ∈ Ty. If both y and z is not x (y 6= z),
then xy, xz ∈ E(G) and a = b = c with a ∈ Ty ∩ Tz. Thus either |NH(a) ∩ Tx| ≥ 2
or a ∈ Ty for some y ∈ NG(x) ∩ S and |NH(a) ∩ Tx| ≥ 1 or a ∈ Ty ∩ Tz for some
y, z ∈ NG(x) ∩ S (y 6= z)

Finally, let x ∈ V (G)\S and let a ∈ V (H). Since C is a double dominating set,
there exists distinct vertices (y, b) and (z, c) in C such that (x, a)(y, b), (x, a)(z, c) ∈
E(G2H). Since x /∈ S, a = b = c. It follows that y, z ∈ NG(x)∩S and a ∈ Ty ∩Tz.

For the converse, suppose that S is a 2-dominating set in G and that properties
(i), (ii), (iii), and (iv) hold. Let (x, a) ∈ V (G2H). Consider the following cases:

Case 1. Suppose that x /∈ S. Then, by (iv) there exist distinct vertices y and z
in NG(x)∩S such that a ∈ Ty ∩Tz. It follows that (y, a), (z, a) ∈ NG2H((x, a))∩C,
where (y, a) 6= (z, a). Thus |NG2H((x, a)) ∩ C| ≥ 2.

Case 2. Suppose that x ∈ S \ N(S). By (i), Tx is a double dominating set
in H; hence, there exist two distinct vertices b, c ∈ Tx such that (x, b), (x, c) ∈
NG2H [(x, a)] ∩ C. Thus, |NG2H [(x, a)] ∩ C| ≥ 2.

Case 3. Suppose that x ∈ S ∩ N(S) and a ∈ V (H) \ N [Tx]. Then
|NG2H((x, a)) ∩ C| ≥ 2 by (ii).

Case 4. Suppose that x ∈ S ∩ N(S) and a ∈ N [Tx]. Suppose first that
a /∈ Tx. Then there exists b ∈ Tx such that ab ∈ E(H). It follows that
(x, b) ∈ NG2H((x, a)) ∩ C. Also, by (iii), either there exists c ∈ Tx \ {b} or
there exists y ∈ NG(x) ∩ S such that (y, a) ∈ C. In either case, we have
|NG2H((x, a)) ∩ C| ≥ 2. Suppose now that a ∈ Tx. Then (x, a) ∈ C. By (iii),
it follows that |NG2H [(x, a)] ∩ C| ≥ 2.

Case 5. Suppose that x ∈ V (G) \ S and a ∈ V (H). Then by (iv),
|NG2H((x, a)) ∩ C| ≥ 2.

Accordingly, C is a double dominating set of G2H. 2

The following result is immediate.

Corollary 3.2. Let G and H be connected non-trivial graphs of orders n and m,
respectively. Then,

γ×2(G2H) ≤ min {m [γ2(G)] , n [γ2(H)]} .

Proof. Let S be a γ2-set of G. Put Tx = V (H) for each x ∈ S. Then C =⋃
x∈S [{x} × Tx] is a double dominating set of G2H by Theorem 3.1. Hence,

γ×2(G2H) ≤ |C| =
∑
x∈S

|Tx| = |S| |V (H)| = mγ2(G).

Similarly, γ×2(G2H) ≤ nγ2(H). Thus,

γ×2(G2H) ≤ min {m [γ2(G)] , n [γ2(H)]} .
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2

Example 3.3. Consider the graphs P52P5 and C42P3 in Figure 5. In Figure
5(a), the set {xb, xd, ya, yb, yc, yd, ye, ua, ub, uc, ud, ue, vb, vd, } is a minimum double
dominating set of P52P5. Thus, γ×2(P52P5) = 14 < 15 = m [γ2(P5)]. This shows
that the strict inequality in Corollary 3.2 can be attained. In Figure 5(b), the
set {xa, xb, xc, za, zb, zc} is a minimum double dominating set of C42P3. Hence,
γ×2(C42P3) = 6 = m [γ2(C4)]. This implies that the bound given in Corollary 3.2
is sharp.

Figure 5: The Cartesian products P52P5 and C42P3

4. Double Domination in the Tensor Product of Graphs

The Tensor product G ⊗ H of two graphs G and H is the graph with vertex-
set V (G ⊗ H) = V (G) × V (H) and edge-set E(G ⊗ H) satisfying the following
conditions: (u, v)(u′, v′) ∈ E(G⊗H) if and only if uu′ ∈ E(G) and vv′ ∈ V (H).

Theorem 4.1. Let G and H be connected non-trivial graphs. Then C =⋃
x∈S ({x} × Tx), where S ⊆ V (G) and Tx ⊆ V (H) for every x ∈ S, is a dou-

ble dominating set of G⊗H if and only if the following properties hold:

(i) There exists y ∈ NG(x) ∩ S with |NH(p) ∩ Ty| ≥ 2 or there exist y, z ∈
NG(x) ∩ S, where y 6= z, such that NH(p) ∩ Ty 6= φ and NH(p) ∩ Tz 6= φ
whenever x ∈ S and p /∈ Tx or x /∈ S and p ∈ V (H); and

(ii) For each x ∈ S and for each p ∈ Tx, there exists y ∈ NG(x) ∩ S such that
|NH(p) ∩ Ty| ≥ 1.

Proof. Suppose C is a double dominating set of G⊗H. Suppose x ∈ S and p /∈ Tx

(or x /∈ S and p ∈ V (H)). Then there exist at least two vertices (y, q), (z, t) ∈ C such
that (x, p)(y, q), (x, p)(z, t) ∈ E(G⊗H). Hence, xy, xz ∈ E(G) and pq, pt ∈ E(H).
If y = z, then q, t ∈ NH(p) ∩ Ty, where q 6= t, and y ∈ NG(x) ∩ S. If y 6= z, then
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|NG(x) ∩ S| ≥ 2, NH(p) ∩ Ty 6= φ, and NH(p) ∩ Tz 6= φ. Hence, (i) holds.
Let x ∈ S and p ∈ Tx. Since C is a double dominating set, there exists

(y, q) ∈ C such that (x, p)(y, q) ∈ E(G ⊗ H). It follows that y ∈ NG(x) ∩ S and
|NH(p) ∩ Ty| ≥ 1. This shows that (ii) holds.

For the converse, suppose that (i) and (ii) hold. Let (x, p) ∈ V (G ⊗ H) and
consider the following cases:
Case 1: (x, p) ∈ C

Then x ∈ S and p ∈ Tx. By (ii), there exists y ∈ NG(x)∩S with |NH(p) ∩ Ty| ≥
1. Pick any q ∈ NH(p)∩Ty. Then (y, q) ∈ C and (x, p)(y, q) ∈ E(G⊗H). It follows
that |NG⊗H [(x, p)] ∩ C| ≥ 2.
Case 2: (x, p) /∈ C

Then either x ∈ S and p /∈ Tx or x /∈ S and p ∈ V (H). By (i), suppose there
exists y ∈ NG(x) ∩ S such that |NH(p) ∩ Ty| ≥ 2. Pick any t, q ∈ NH(p) ∩ Ty,
where t 6= q. Then, (y, t), (y, q) ∈ C implying that (x, p)(y, t), (x, p)(y, q) ∈ E(G ⊗
H). Hence |NG⊗H((x, p)) ∩ C| ≥ 2. Next, suppose that there exist distinct y, z ∈
NG(x) ∩ S with NH(p) ∩ Ty 6= φ and NH(p) ∩ Tz 6= φ. Pick q ∈ NH(p) ∩ Ty and
t ∈ NH(p) ∩ Tz. Then, (y, q) and (z, t) are distinct elements of NG⊗H((x, p)) ∩ C.
Hence |NG⊗H((x, p)) ∩ C| ≥ 2.

Accordingly, C is a double dominating set of G⊗H. 2

Corollary 4.2. Let G and H be connected non-trivial graphs. If S and D are double
dominating sets of G and H respectively, then C = S ×D is a double dominating
set of G⊗H. In particular,

γ×2(G⊗H) ≤ γ×2(G)γ×2(H).

Proof. Let Tx = D for each x ∈ S. Then C = ∪x∈S [{x} × Tx]. By Theorem 4.1, C
is a double dominating set of G⊗H. Hence,

γ×2(G⊗H) ≤ |C|

=

∣∣∣∣∣ ⋃
x∈S

[{x} × Tx]

∣∣∣∣∣
= |S||D|
= γ×2(G)γ×2(H).

This proves the desired result. 2

Example 4.3. Consider the graphs P6 ⊗ P6 and P5 ⊗ P5 in Figure 6. In Figure
6(a), it can be seen that γ×2(P6 ⊗ P6) = 20 < 25 = γ×2(P6)γ×2(P6). In Figure
6(b), γ×2(P5⊗P5) = 16 = γ×2(P5)γ×2(P5). These graphs show that both the strict
inequality and equality in Corollary 4.2 can be attained.
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Figure 6: The tensor products of P6 ⊗ P6 and P5 ⊗ P5
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