DOI QR코드

DOI QR Code

무화과의 성숙도에 따른 유기산, 유리당 및 향기 성분의 변화에 관한 연구

Changes in Organic acids, Free Sugars, and Volatile Flavor Compounds in Fig (Ficus carica L.) by Maturation Stage

  • 신태선 (전남대학교 식품영양과학부) ;
  • 박진아 (전남대학교 교육대학원 영양교육전공) ;
  • 정복미 (전남대학교 식품영양과학부)
  • Shin, Tai-Sun (Division of Food and Nutrition, Chonnam National University) ;
  • Park, Jin-A (Nutrition Education Major, Graduate School of Education, Chonnam National University) ;
  • Jung, Bok-Mi (Division of Food and Nutrition, Chonnam National University)
  • 투고 : 2015.02.04
  • 심사 : 2015.06.19
  • 발행 : 2015.07.31

초록

무화과의 성숙도에 따른 유기산과 유리당, 휘발성 향기 성분의 변화를 측정하기 위하여 전남 여수시에 위치한 한 농장에서 무작위로 120개 채취하여 견고성을 모두 측정한 후 견고성에 따라 6개군으로 무화과를 분류하고 각 군이 유의적 차이가 나도록 무화과를 각 군에 6개씩 선별하였다. 견고성에 따라 6단계로 분류된 무화과의 물성 특성에서 탄력성은 초기에는 낮았다가 4, 5단계일 때 가장 높았으며 6단계에서는 다시 감소되었다. 응집력은 숙성될수록 계속 증가하였고, 점착성은 초기에는 낮았다가 2단계에서 가장 높았고 그 이후부터 서서히 감소되었다. 깨짐성은 3단계 이후에는 유의적으로 증가하는 경향을 나타냈다. 무화과의 주된 유기산 성분은 구연산과 사과산이었으며, 주석산은 초기에는 검출되지 않았다가 완숙 단계에서 나타났다. 수산, 구연산, 사과산은 숙성될수록 점차 증가하다가 중간 단계일 때 최고로 나타났다가 완숙 단계에서는 감소하였다. 반면 인산과 호박산은 성숙도가 증가함에 따라 증가하는 것으로 나타났다. 무화과의 주된 당은 과당과 포도당이었으며, 초기에는 함량이 높았으나 완숙될수록 서서히 감소되는 경향을 나타냈다. 휘발성 향기 성분의 경우 acid류 14종, alcohol류 15종, aldehyde류 23종, aromatic류 4종, ester류 10종, hydrocarbon류 33종, ketone류 9종, 기타 화합물류는 6종, terpene류는 5종이었으며, 총 119개의 휘발 성분이 확인되었다. 가장 주된 성분은 hexadecanoic acid가 가장 높았으며, 다음으로 hexane, dodecanal, DL-limonene 순으로 나타났다. 이 중 hexadecanoic acid, DL-limonene 성분은 초기에 높았다가 완숙됨에 따라 감소되는 경향을 보였으며, dodecanal, hexane은 초기에 비해 중간 단계에 높아졌다가 완숙단계에서는 다시 낮아지는 경향을 나타냈다.

This study collected 120 figs, classified them into six degrees of maturity according to hardness values, and analyzed contents of organic acids and free sugars. Volatile compounds in figs were investigated using the solid-phase microextraction method of gas chromatography/mass spectrometry. For measurement of texture, elasticity increased up to stage 4 and decreased again. Cohesiveness and brittleness increased with maturation. Organic acids in figs were mainly composed of citric acid, malic acid, and tartaric acid in the final stage. Fructose and glucose were the major sugar components of figs. Fructose content decreased from stage 1 to stage 4 and then increased significantly. One hundred and nineteen volatile compounds were identified in figs, and classes were 14 acids, 15 alcohols, 23 aldehydes, 10 esters, 33 hydrocarbons, 11 ketones, four aromatics, six miscellaneous, and five terpenes. The dominant volatile components in figs were hexadecanoic acid, hexane, dodecanal, DL-limonene, 2-hexanal, nonanal, and 6-methyl-5-hepten-2-one.

키워드

참고문헌

  1. Vinson JA. 1999. The functional food properties of figs. Cereal Food World 44: 82-87.
  2. Kim SS, Lee CH, Oh SL, Chung DH. 1992. Chemical components in the two cultivars of Korean figs (Ficus carical L.). J Korean Agric Chem Soc 35: 51-54.
  3. Shin MK. 1997. Clinical herbalism. Younglim Inc., Seoul, Korea. p 419-420.
  4. Shin SC. 1980. Study on the enzyme of the fig. Sunchon National Agricultural College J 17: 524-543.
  5. Kim KH. 1981. Chemical components of Korean Figs and its storage stability. Korean J Food Sci Technol 13: 165-169.
  6. Kang SK, Chung HJ. 1995. Solvent fractionation of fig leaves and its antimicrobial activity. Agricultural Chemistry Biotechnology 38: 289-292.
  7. Moon CK, Kim YG, Kim MY. 1997. Studies on the bioactivities of the extractives from Ficus carica. J Inst Agric Res Utili 31: 69-79.
  8. Ryu SR, Cho H, Jung JS, Jung ST. 1998. The study on the separation, antitumor activity as new substances in fig. J Applied Chem 2: 961-964.
  9. Jeong MR, Kim BS, Lee YE. 2002. Physicochemical characteristics and antioxidative effects of Korean figs (Ficus carica L.). J East Asian Soc Dietary Life 12: 566-573.
  10. Jeong MR, Cha JD, Lee YE. 2005. Antibacterial activity of Korean fig (Ficus carica L.) against food poisoning bacteria. Korean J Food Cookery Sci 21: 84-93.
  11. Park BH, Park WK. 1994. A study on the manufacturing of fig conserves for beef tenderizing. J Korean Soc Food Nutr 23: 1027-1031.
  12. Chu HN. 2012. Manufacturing and characterization of fig (Ficus carica L.) puree and leather. MS Thesis. Chonnam National University, Gwangju, Korea. p 90.
  13. Hou WN, Kim MH. 1998. Processing of low sugar jams from fig pulp treated with pectinesterase. Korean J Food Sci Technol 30: 125-131.
  14. Jeong MR, Cha JD, Yun SI, Han JH, Lee YE. 2005. Manufacturing of wine with Korean figs (Ficus carica L.) and quality improvement by adding fig leaves. J East Asian Soc Dietary Life 15: 112-118.
  15. Shin TS, Xue Z, Do YW, Jeong SI, Woo HC, Kim NG. 2011. Chemical properties of sea tangle (Saccharina japonica) cultured in the different depths of seawater. Clean Technology 17: 395-405.
  16. Engel KH, Ramming DW, Flath RA, Teranishi R. 1988. Investigation of volatile constituents in nectarines. 2. Changes in aroma composition during nectarine maturation. J Agric Food Chem 36: 1003-1006. https://doi.org/10.1021/jf00083a024
  17. Aubert C, Günata Z, Ambid C, Baumes R. 2003. Changes in physicochemical characteristics and volatile constituents of yellow- and white-fleshed nectarines during maturation and artificial ripening. J Agric Food Chem 51: 3083-3091. https://doi.org/10.1021/jf026153i
  18. Mehinagic E, Royer G, Symoneaux R, Jourjon F, Prost C. 2006. Characterization of odor-active volatiles in apples: influence of cultivars and maturity stage. J Agric Food Chem 54: 2678-2687. https://doi.org/10.1021/jf052288n
  19. Menager I, Jost M, Aubert C. 2004. Changes in physicochemical characteristics and volatile constituents of strawberry (Cv. Cigaline) during maturation. J Agric Food Chem 52: 1248-1254. https://doi.org/10.1021/jf0350919
  20. Riu-Aumatell M, Lopez-Tamames E, Buxaderas S. 2005. Assessment of the volatile composition of juices of apricot, peach, and pear according to two pectolytic treatments. J Agric Food Chem 53: 7837-7843. https://doi.org/10.1021/jf051397z
  21. Chen JL, Wu JH, Wang Q, Deng H, Hu XS. 2006. Changes in the volatile compounds and chemical and physical properties of Kuerle fragrant pear (Pyrus serotina Reld) during storage. J Agric Food Chem 54: 8842-8847. https://doi.org/10.1021/jf061089g
  22. Suhardi S, Suzuki M, Yoshida K, Muto T, Fujita A, Watanabe N. 2002. Changes in the volatile compounds and in the chemical and physical properties of snake fruit (Salacca edulis Reinw) Cv. Pondoh during maturation. J Agric Food Chem 50: 7627-7633. https://doi.org/10.1021/jf020620e
  23. Aubert C, Ambid C, Baumes R, Gunata Z. 2003. Investigation of bound aroma constituents of yellow-fleshed nectarines (Prunus persica L. Cv. Springbright). Changes in bound aroma profile during maturation. J Agric Food Chem 51: 6280-6286. https://doi.org/10.1021/jf034613h
  24. Wiley RC. 1994. Preservation methods for minimally processed refrigerated fruits and vegetables. In Minimally Processed Refrigerated Fruits and Vegetables. Wiley RC, ed. Chapman & Hall, Inc., New York, NY, USA. p 66-134.
  25. Salinas M, Zalacain A, Pardo F, Alonso GL. 2004. Stir bar sorptive extraction applied to volatile constituents evolution during Vitis vinifera ripening. J Agric Food Chem 52: 4821-4827. https://doi.org/10.1021/jf040040c
  26. Perez-Martinez M, Sopelana P, de Pena MP, Cid C. 2008. Changes in volatile compounds and overall aroma profile during storage of coffee brews at 4 and 25$^{\circ}C$. J Agric Food Chem 56: 3145-3154. https://doi.org/10.1021/jf703731x
  27. Sotomayor JA, Martinez RM, Garcia AJ, Jordan MJ. 2004. Thymus zygis subsp. gracilis: watering level effect on phytomass production and essential oil quality. J Agric Food Chem 52: 5418-5424. https://doi.org/10.1021/jf0496245
  28. Kwon YJ, Kim YH, Kwag JJ, Kim KS, Yang KK. 1990. Volatile components of apricot (Prunus armeniaca var. ansu Max.) and Japanese apricot (Prunus mume Sieb. et Zucc.). J Korean Agric Chem Soc 33: 319-324.
  29. Youn AR, Noh BS, Kim BS, Kwon KH, Kim JH, Kim SH, Choi DJ, Cha HS. 2011. Analysis of aroma patterns in muskmelon at different storage temperatures using a mass spectrometry-based electronic nose. Korean J Food Sci Technol 43: 419-425. https://doi.org/10.9721/KJFST.2011.43.4.419
  30. Shalit M, Katzir N, Tadmor Y, Larkov O, Burger Y, Shalekhet F, Lastochkin E, Ravid U, Amar O, Edelstein M, Karchi Z, Lewinsohn E. 2001. Acetyl-coA: alcohol acetyltransferase activity and aroma formation in ripening melon fruits. J Agric Food Chem. 49: 749-799.
  31. Kim JM, Ko YS. 1997. Effects of post-harvest storage period on the flavor components of Korean kiwifruit (Actinidia deliciosa Planch.). Korean J Food Sci Technol 29: 623-625.
  32. Park ER, Jo JO, Kim KS. 1999. Volatile flavor components in various varieties of peach (Prunus persica L.) cultivated in Korea. Korean J Postharvest Sci Technol 6: 206-215.
  33. Park ER, Kim KS. 2000. Volatile flavor components in various varieties of grape (Vitis vinifera L.). Korean J Postharvest Sci Technol 7: 366-372.
  34. Lee HJ, Park ER, Kim KS. 2000. Volatile flavor components in various varieties of apple (Malus pumila M.). J Korean Soc Food Sci Nutr 29: 597-605.
  35. Park ER, Choi JH, Kim KS. 2002. Volatile flavor components from traditional cultivars of pear (Pyrus pyrifolia N.). Korean J Food Sci Technol 34: 180-185.
  36. Schieberle P, Grosch W. 1988. Identification of potent flavor compounds formed in an aqueous lemon oil/citric acid emulsion. J Agric Food Chem 36: 797-800. https://doi.org/10.1021/jf00082a031
  37. Soares FD, Pereira T, Marques MOM, Monteiro AR. 2007. Volatile and non-volatile chemical composition of the white guava fruit (Psidium guajava) at different stages of maturity. Food Chem 100: 15-21. https://doi.org/10.1016/j.foodchem.2005.07.061
  38. Buttery RG, Ling LC, Light DM. 1987. Tomato leaf volatile aroma components. J Agric Food Chem 35: 1039-1042. https://doi.org/10.1021/jf00078a043
  39. Gomez E, Ledbetter CA, Hartsell PL. 1993. Volatile compounds in apricot, plum, and their interspecific hybrids. J Agric Food Chem 41: 1669-1676. https://doi.org/10.1021/jf00034a029
  40. Takeoka GR, Guntert M, Flath RA, Wurz RE, Jennings W. 1986. Volatile constituents of kiwi fruit (Actinidia chinensis Planch.). J Agric Food Chem 34: 576-578. https://doi.org/10.1021/jf00069a050
  41. Dourtoglou VG, Yannovits NG, Tychopoulos VG, Vamvakias MM. 1994. Effect of storage under carbon dioxide atmosphere on the volatile, amino acid, and pigment constituents in red grape (Vitis vinifera L. var. Agiorgitiko). J Agric Food Chem 42: 338-344. https://doi.org/10.1021/jf00038a020
  42. Kawakami M, Ganguly SN, Banerjee J, Kobayashi A. 1995. Aroma composition of oolong tea and black tea by brewed extraction method and characterizing compounds of darjeeling tea aroma. J Agric Food Chem 43: 200-207. https://doi.org/10.1021/jf00049a037
  43. Callejon RM, Morales ML, Troncoso AM, Silva Ferreira AC. 2008. Targeting key aromatic substances on the typical aroma of sherry vinegar. J Agric Food Chem 56: 6631-6639. https://doi.org/10.1021/jf703636e
  44. Koundouras S, Marinos V, Gkoulioti A, Kotseridis Y, van Leeuwen C. 2006. Influence of vineyard location and vine water status on fruit maturation of nonirrigated cv. Agiorgitiko (Vitis vinifera L.). Effects on wine phenolic and aroma components. J Agric Food Chem 54: 5077-5086. https://doi.org/10.1021/jf0605446
  45. Dirinck P, Van Opstaele F, Vandendriessche F. 1997. Flavour differences between northern and southern European cured hams. Food Chem 59: 511-521. https://doi.org/10.1016/S0308-8146(97)00012-5
  46. Kolattukudy PE. 1980. Cutin, suberin, and waxes. In The Biochemistry of Plants. Stumpf PK, Conn EE, eds. Academic Press, New York, NY, USA. Vol 4, p 85-116.
  47. Devos M, Patte F, Pouault P, Laffort P, Van Gemert L. 1990. Standardized human olfactory thresholds. Information Press Ltd., Oxford, UK. p 40-45.
  48. Hsieh TCY, Williams SS, Vejaphan W, Meyers SP. 1989. Characterization of volatile components of menhaden fish (Brevoortia tyrannus) oil. J Am Oil Chem Soc 66: 114-117. https://doi.org/10.1007/BF02661797
  49. Hashizume M, Gordon MH, Mottram DS. 2007. Light-induced off-flavor development in cloudy apple juice. J Agric Food Chem 55: 9177-9182. https://doi.org/10.1021/jf0715727
  50. Beaulieu JC, Lea JM. 2006. Characterization and semiquantitative analysis of volatiles in seedless watermelon varieties using solid-phase microextraction. J Agric Food Chem 54: 7789-7793. https://doi.org/10.1021/jf060663l
  51. Lozano PR, Drake M, Benitez D, Cadwallader KR. 2007. Instrumental and sensory characterization of heat-induced odorants in aseptically packaged soy milk. J Agric Food Chem 55: 3018-3026. https://doi.org/10.1021/jf0631225
  52. Castro-Vazquez L, Diaz-Maroto MC, Perez-Coello MS. 2006. Volatile composition and contribution to the aroma of spanish honeydew honeys. Identification of a new chemical marker. J Agric Food Chem 54: 4809-4813. https://doi.org/10.1021/jf0604384
  53. Cho IH, Choi HK, Kim YS. 2006. Difference in the volatile composition of pine-mushrooms (Tricholoma matsutake Sing.) according to their grades. J Agric Food Chem 54: 4820-4825. https://doi.org/10.1021/jf0601416
  54. Vendramini AL, Trugo LC. 2000. Chemical composition of acerola fruit (Malpighia punicifolia L.) at three stages of maturity. Food Chem 71: 195-198. https://doi.org/10.1016/S0308-8146(00)00152-7
  55. Minh Tu NT, Onishi Y, Choi HS, Kondo Y, Bassore SM, Ukeda H, Sawamura M. 2002. Characteristic odor components of Citrus sphaerocarpa Tanaka (Kabosu) cold-pressed peel oil. J Agric Food Chem 50: 2908-2913. https://doi.org/10.1021/jf011578a
  56. Lam LKT, Zhang J, Hasegawa S. 1994. Citrus limonoid reduction of chemically induced tumorigenesis. Food Tech 48: 104-108.
  57. Kang SK, Jang MJ, Kim YD. 2006. A study on the flavor constituents of the citron (Citrus junos). Korean J Food Preserv 13: 204-210.
  58. van den Dool H, Kratz PD. 1963. A generalization of the retention index system including linear temperature programmed gas liquid partition chromatography. J Chromatogr 11: 463-471. https://doi.org/10.1016/S0021-9673(01)80947-X
  59. Mass Spectrometry Data Centre. 1974. Eight peak index of mass spectra. 2nd ed. Mass Spectrometry Data Centre, Aldermaston, UK.
  60. Jennings W, Shibamoto T. 1980. Qualitative analysis of flavor and fragrance volatiles by glass capillary gas chromatography. Academic Press, New York, NY, USA.
  61. Sadtler Research Laboratories. 1985. The Sadtler standard gas chromatography retention index library. Division of Bio-Rad Laboratories, Inc., Philadelphia, PA, USA. Vol 1-4.

피인용 문헌

  1. 볶음 공정에 따른 발아 향미차의 향기성분 및 이화학적 특성 vol.23, pp.5, 2015, https://doi.org/10.11002/kjfp.2016.23.5.673