DOI QR코드

DOI QR Code

Fundamental Properties of Electrospun Polylactic Acid/Cellulose Nanocrystal Composite Mats

전기방사를 이용한 PLA/CNC 복합 매트의 기초 특성

  • Jo, Yu-Jeong (Department of Forest Products, Korea Forest Research Institute) ;
  • Lee, Sun-Young (Department of Forest Products, Korea Forest Research Institute) ;
  • Chun, Sang-Jin (Department of Forest Products, Korea Forest Research Institute)
  • 조유정 (국립산림과학원 임산공학부) ;
  • 이선영 (국립산림과학원 임산공학부) ;
  • 전상진 (국립산림과학원 임산공학부)
  • Received : 2015.02.27
  • Accepted : 2015.05.12
  • Published : 2015.07.25

Abstract

In this study, nanocomposite mats consisting of cellulose nanocrystals (CNCs) and poly(lactic acide) (PLA) were electrospun from a suspension mixture consisting of tetrahydrofuran at room temperature. Morphology study showed that fibers of electrospun composite mats were aligned in three dimensional surface along the fiber long-axis. Average diameter of the electrospun fibers decreased with an increase in the CNC loading level. Tensile strength of the electrospun fibers mat decreased with an increase in the CNC loading level because of bead formation in the formed fibers and low interfacial bond strength between PLA and CNC. Meanwhile, thermal stability of the electrospun nanocomposite mats was effectively improved as the amount of CNC increased.

본 연구에서는 바이오 매스기반의 셀룰로오스 나노크리스탈(cellulose nanocrystals, 이하 CNC)과 PLA (polylactic acid, 이하 PLA)를 tetrahydrofuran (THF)에 용해시킨 서스펜션으로부터 PLA 및 PLA/CNC 나노섬유 복합재 매트를 상온에서 전기방사법으로 제작하였다. PLA 및 PLA/CNC 나노복합재 매트의 형상은 섬유가 긴축을 따라 3차원 구조의 표면으로 정렬된 것으로 관찰되었다. PLA 및 PLA/CNC 나노섬유 복합재 매트의 인장강도는 CNC 함량이 증가할수록 감소하였는데, 이는 전기방사된 섬유 속에 형성된 비드와 PLA와 CNC의 낮은 계면접착력 때문으로 기인된다. PLA/CNC 복합재 매트를 구성하는 섬유의 평균 지름 크기는 CNC의 함량이 증가할수록 작아졌다. 한편 PLA/CNC 나노섬유 복합재 매트의 열안정성은 CNC의 함량이 증가할수록 증가하는 것을 보였다.

Keywords

References

  1. Agarwal, S., Wendorff, J.H., Greiner, A. 2009. Progress in the field of electrospinning for tissue engineering applications. Advanced Materials 21(32-33): 3343-3351. https://doi.org/10.1002/adma.200803092
  2. Arecchi, A., Scampicchio, M., Drusch, S., Mannino, S. 2010. Nanofibrous mem-brane based tyrosinase biosensor for the detection of phenolic compounds. Analytica Chimica Acta 659: 133-136. https://doi.org/10.1016/j.aca.2009.11.039
  3. Bianco, A., Di, F., Cacciotti, I. 2011. Electrospun poly (${\varepsilon}$-caprolactone)-based composites using synthesized ${\beta}$-tricalcium phosphate. Polymers for Advanced Technologies 22(12): 1832-1841. https://doi.org/10.1002/pat.1680
  4. Gupta, B., Revagade, N., Hilborn, J. 2007. Poly (lactic acid) fiber: An overview. Progress in Polymer Science 32(4): 455-482. https://doi.org/10.1016/j.progpolymsci.2007.01.005
  5. Jiang, H., Hu, Y., Li, Y., Zhao, P., Zhu, K., Chen, W. 2005. A facile technique toprepare biodegradable coaxial electrospun nanofibers for controlled release ofbioactive agents. Journal of Controlled Release 108: 237-243. https://doi.org/10.1016/j.jconrel.2005.08.006
  6. Jose, M.L., Amparo, L. 2011. Nanotechnology for bioplastics: Oppor-tunities, challenges and strategies. Trends in Food Science and Technology 22: 611-617. https://doi.org/10.1016/j.tifs.2011.01.007
  7. Kim, K., Yu, M., Zong, X.H., Chiu, J., Fang, D.F., Seo, Y.S. 2003. Control of degradation rate and hydrophilicity in electrospun non-woven poly (D, L-lactide) nanofiber scaffolds for biomedical applications. Biomaterials 24(27): 4977-4985. https://doi.org/10.1016/S0142-9612(03)00407-1
  8. Kriegel, C., Arrechi, A., Kit, K., McClements, D.J., Weiss, J. 2008. Fabrication, functionalization, and application of electrospun biopolymer nanofibers. CriticalReviews in Food Science and Nutrition 48: 775-797.
  9. Lamastra, F.R., Puglia, D., Monti, M., Vella, A., Peponi, L., Kenny, J.M. 2012. Poly (${\varepsilon}$-caprolactone) reinforced with fibres of poly (methyl methacry-late) loaded with multiwall carbon nanotubes or graphene nanoplatelets. Chemical Engineering Journal 195/196(1): 140-148. https://doi.org/10.1016/j.cej.2012.04.078
  10. Luana, P., Andrea, C., Cagri, T., Dario, P. 2013. Industrial Upscaling of Electrospinning and Applications of Polymer Nanofibers: A Review. Macromolecular Materials and Engineering 298(5): 504-520. https://doi.org/10.1002/mame.201200290
  11. Li, W.J., Laurencin, C.T., Caterson, E.J., Tuan, R.S., Ko, F.K. 2002. Electrospun nanofibrous structure: A novel scaffold for tissue engineering. Journal of Biomedical Materials Research 60(4): 613-621. https://doi.org/10.1002/jbm.10167
  12. Maria, D.S., Amparo, L., Jose, M.L. 2010. Natural micro andnanobio composites with enhanced barrier properties and novel functionalities for food biopackaging applications. Trends in Food Science and Technology 21: 528-536. https://doi.org/10.1016/j.tifs.2010.07.008
  13. Park, B.D., Um, I.C., Lee, S.Y., Dufresne, A. 2014. Preparation and characterization of cellulose nanofibril/polyvinyl alcohol composite nanofibers by electrospinning. Journal of Korean Wood Science and Technology 42(2): 119-129. https://doi.org/10.5658/WOOD.2014.42.2.119
  14. Petersson, L., Oksman, K. 2006. Biopolymer based nanocomposites: comparing layered silicates and microcrystalline cellulose as nano reinforcement. Composites Science and Technology 66: 2187-2196. https://doi.org/10.1016/j.compscitech.2005.12.010
  15. Pirani, S., Abushammala, H.M.N., Read, H. 2013. Preparation and characterization of electrospun PLA/nanocrystalline cellulose-Based composites. Applied Polymer Science 130: 3345-3354. https://doi.org/10.1002/app.39576
  16. Pracella, M., Haque, M.M., Puglia, D. 2014. Morphology and properties tuning of PLA/cellulose nanocrystals bionanocomposites by means of reactive functionalization and blending with PVAc. Polymer 55: 3720-3728. https://doi.org/10.1016/j.polymer.2014.06.071
  17. Ramakrishna, S., Jose, R., Archana, P.S., Nair, A.S., Balamurugan, R., Venugopal, J. 2010. Science and engineering of electrospun nanofibers for advances inclean energy, water filtration, and regenerative medicine. Journal of Materials Science 45: 6283-6312. https://doi.org/10.1007/s10853-010-4509-1
  18. Xiang, C.H., Joo, Y.L., Frey, M.W. 2009. Nanocomposite fibers electrospun from poly (lactic acid)/cellulose nanocrystals. Journal of Biobased Materials and Bioenergy 3(2): 147-155. https://doi.org/10.1166/jbmb.2009.1016
  19. Yang, F., Murugan, R., Wang, S., Ramakrishna S. 2005. Electrospinning of nano/micro scale poly (l-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 26(15): 2603-2610. https://doi.org/10.1016/j.biomaterials.2004.06.051