DOI QR코드

DOI QR Code

Combustion Properties of Woods for Indoor Use (II)

실내 사용 목재의 연소 특성 분석 (II)

  • 서현정 (국립산림과학원 임산공학부) ;
  • 강미란 (국립산림과학원 임산공학부) ;
  • 손동원 (국립산림과학원 임산공학부)
  • Received : 2015.06.03
  • Accepted : 2015.07.02
  • Published : 2015.07.25

Abstract

The aim of this study is to analyze the combustion and thermal properties in order to establish baseline data for the fire safety evaluation of domestic timbers. The combustion properties such as heat release rate, total heat release, gas yield, and mass loss were analyzed by the method of cone calorimeter test and thermogravimetry (TGA). Thermal decomposition temperatures of the specimens by TGA were recorded as $359.83^{\circ}C$ for White pine, $359.80^{\circ}C$ for Red-Leaved Hornbeam, $363.14^{\circ}C$ for Carolina poplar, $358.59^{\circ}C$ for Konara oak, and $362.11^{\circ}C$ Sargent cherry. Red-Leaved Hornbeam showed the highest value of heat release rate, but, Carolina poplar wood showed the lowest value. In case of the total heat release, Red-Leaved Hornbeam wood showed the highest value and Carolina poplar wood showed the lowest one. The gas analysis results showed that Sargent cherry wood had the lowest value of 0.021, and Konara oak had the highest at 0.031 in the $CO/CO_2$. The minimum value of mass reduction was recorded as 87.57% for Sargent cherry, but, on the other hand, it was 95.03% for Konara oak. There was a correlation between the gas generation of CO and $CO_2$, and combustion behavior of woods. These results are expected to be usful for providing a fundamental guideline with the fire safety of wood use in interior applications.

본 연구에서는 목재의 화재 안정성 평가에 대한 기초 자료를 구축하기 위하여 연소 성능 및 열적 특성을 분석하였다. 열특성 분석은 콘 칼로리미터 시험 방법과 열중량 분석(TGA)으로 열방출률, 총 방출열량, 연소 가스 발생, 그리고 중량 감소를 분석하였다. TGA 분석에서 시료의 열분해 온도는 스트로브 잣나무 $359.83^{\circ}C$, 서어나무 $359.80^{\circ}C$, 이태리 포플러 $363.14^{\circ}C$, 졸참나무 $358.59^{\circ}C$, 산벚나무 $362.11^{\circ}C$로 나타났다. 열방출률의 최댓값은 서어나무로 나타났으며, 최솟값은 스트로브 잣나무로 나타났다. 총방출열량을 분석한 결과, 서어나무가 가장 높은 값을 나타내었고, 이태리 포플러가 가장 낮은 값을 나타내었다. 가스분석 결과에서는 산벚나무가 $CO/CO_2$ 비율이 최소치로 0.021로 확인되었고, 졸참나무가 0.031로 최대치를 나타내었다. 중량감소율의 최솟값은 산벚나무가 87.57%로 나타났으며, 졸참나무가 95.03%로 CO와 $CO_2$의 발생과 목재 연소의 거동과의 상관관계를 나타내었다. 본 연구는 목재의 실내 적용 시 화재 안정성 향상 등의 기초 자료로써 매우 유용할 것으로 판단된다.

Keywords

References

  1. Byrne, C.E., Nagle, D.C. 1997. Carbonization of wood for advanced materials applications. Carbon 35(2): 259-266. https://doi.org/10.1016/S0008-6223(96)00136-4
  2. Cheong, Y.J. 2010. Combustion Properties of the Quercus variabilis and Zelkova serrata Dried at Room Temperature (II). Applied Chemistry for Engineering 21(4): 469-474.
  3. Chung, Y.J. 2009. Comparison of combustion properties of the Pinus regida, Castanea sativa and Zelkoa serrata, Journal of Korean Institute of Fire Science and Engieering 23(4): 73-78.
  4. Chung, Y,J,. Spearpoint, M. 2007. Combustion properties of native Korean wood species, International Journal on Engineering Performance-Based Fire Codes 9(3): 118-125.
  5. Czegeny, Z., Jakab, E., Blazso, M. 2013. Pyrolysis of wood, cellulose, lignin-rominated epoxy oligomer flame retardant mixtures, Journal of Analytical and Applied Pyrolysis 103: 52-59. https://doi.org/10.1016/j.jaap.2012.11.002
  6. Eom, Y.G. 2003. Wood and engineered wood as the eco-friendly building materials. Air cleaning technology 20(2): 26-49.
  7. Guillaume, E., Marquis, D., Saragoza, L. 2014. Calibration of flow rate in cone calorimeter tests. Fire and Materials 38: 194-203. https://doi.org/10.1002/fam.2174
  8. Kim, J., Lee, J.H., Kim, S. 2012. Estimating the fire behavior of wood flooring using a cone calorimeter, Journal of Thermal Analysis and Calorimetry 110: 677-683. https://doi.org/10.1007/s10973-011-1902-1
  9. KS F ISO 5660-1. Reaction to fire test-Heat release. smoke production and mass loss rate -Part 1: Heat release rate (Cone calorimeter method).
  10. Lee, B.H., Kim, H.S., Kim, S., Kim, H.J., Lee, B.W., Deng, Y., Feng, Q., Luo, J. 2011. Evaluating the flammability of wood-based panels and gypsum particleboard using a cone calorimeter. Construction and Building Materials 25 (7): 3044-3050. https://doi.org/10.1016/j.conbuildmat.2011.01.004
  11. Park. Y., Jun. B., Seo. J., Kim. S. 2011. The Improvement of Thermal Conductivity of wood-based Panel for Laminated Flooring Used the Exfoliated Graphite for Heating Energy Conservation. Journal of the society of living environmental system Korea 18(6): 650-655.
  12. Seo, H.J., Son, D.W. 2015. Combustion characteristics of wood for interior. Journal of Architecture Institute of Korea, Conference Proceedings 35(1): 411-412.
  13. Seo, H.J., Kim, S., Son, D.W., Park, S.B. 2013. Review on Enhancing Flame Retardant Performance of Building Materials using Carbon Nanomaterials, Journal of the society of living environmental system Korea 20(4): 514-526.
  14. Son, D.W., Kang, S. 2014. Combustion Properties of Woods for Indoor Use (I). Journal of the Korean wood science and technology 42(6): 675-681. https://doi.org/10.5658/WOOD.2014.42.6.675
  15. Son, D.W., Kang, M.R. 2015. Combustion Characteristics of Fire Retardants Treated Wood (I). Journal of the Korean wood science and technology 43(1): 96-103. https://doi.org/10.5658/WOOD.2015.43.1.96
  16. Wu, Y., Yao, C., Hu, Y., Yang, Y., Qing, Y., Wu, Q. 2014. Flame retardancy and thermal degradation behavior of red gum wood treated with hydrate magnesium chloride, Journal of Industrial and Engineering Chemistry, 20(5): 3536-3542. https://doi.org/10.1016/j.jiec.2013.12.046
  17. Yang, J., Roy, C. 1999. Using DTA to quantitatively determine enthalpy change over a wide temperature range by the "mass-difference baseline method", Thermochimica Acta 333(2-3): 131-140. https://doi.org/10.1016/S0040-6031(99)00106-9

Cited by

  1. Combustion Characteristics of Useful Imported Woods vol.44, pp.1, 2016, https://doi.org/10.5658/WOOD.2016.44.1.19