DOI QR코드

DOI QR Code

A Study on the Inhibiting Corrosion of Triethanolamine for the SCM440 Steel

CM440 강에 대한 트리에탄올아민의 부식억제에 관한 연구

  • Park, Keun-Ho (Dept. of Chemical Engineering, Changwon National University)
  • 박근호 (창원대학교 화공시스템공학과)
  • Received : 2015.02.09
  • Accepted : 2015.03.12
  • Published : 2015.03.30

Abstract

In this study, the current-voltage curves for the SCM440 steel by the addition of an organic corrosion inhibitor triethanolamine(TEA) was measured using the conventional three electrodes of cyclic voltammetry. As a result, the C-V characteristics of SCM440 steel were to be for an irreversible process due to the oxidation current from the cyclic voltammetry. Diffusion coefficient according to the twice increasing the concentration of TEA in the corrosion inhibitor from $2.5{\times}10^{-4}M$ to $5.0{\times}10^{-4}M$, the diffusion coefficient was found to be a good corrosion-inhibiting effect is reduced by 1.5 times, so for each $2.561{\times}10^{-6}cm^2s^{-1}$ to $1.707{\times}10^{-6}cm^2s^{-1}$. When according to the electrolyte concentration and the effect is to increase the electrolyte concentration to 1.0 N at 0.5 N, the diffusion coefficient is $2.56{\times}10^{-6}cm^2s^{-1}$ to $5.12{\times}10^{-6}cm^2s^{-1}$, each 2 times decrease in the use of the electrolyte of 1.0 N, because this was more appropriate.

일반적인 3-전극 시스템의 순환전압전류법을 사용하여 유기부식억제제인 트리에탄올아민(TEA)을 첨가하여 SCM440 강에 대한 전류-전압 곡선을 측정하였다. 그 결과 SCM440 강의 C-V특성은 순환전압전류법으로부터 산화전류에 기인한 비가역 공정으로 나타났다. 확산계수는 부식억제제 TEA의 농도를 $2.5{\times}10^{-4}M$에서 $5.0{\times}10^{-4}M$로 2배로 증가시킴에 따라 확산계수는 각각 $2.561{\times}10^{-6}cm^2s^{-1}$에서 $1.707{\times}10^{-6}cm^2s^{-1}$로 1.5배로 감소하므로 부식억제효과가 좋음을 알 수 있었다. 그리고 전해질 농도변화에 따르는 효과는 전해질 농도를 0.5 N에서 1.0 N로 증가시키면, 확산계수는 각각 $5.12{\times}10^{-6}cm^2s^{-1}$에서 $2.56{\times}10^{-6}cm^2s^{-1}$로 2배로 감소하므로 1.0 N의 전해질의 사용이 적합하였다.

Keywords

References

  1. M. Imade, S. Fukuyama, L. Zhang, M. Wen and K. Yokogawa, Hydrogen Environment Embrittlement (HEE) of SCM440 Steel in High-pressure Hydrogen at Room Temperature, J. Japan Inst. Metals, 69(2), 190 (2005). https://doi.org/10.2320/jinstmet.69.190
  2. J. H. Kim, W. S. Shim, Y. K. Yoon, Y. S. Lee, K. U. Cha, and S. K. Hong, A Study on the Residual Stress Evaluation of Autofrettaged SCM440 High Strength Steel, J. Kor. Soc. Pro. Eng., 14(4), 39 (2010).
  3. K. E. Kim, B. H. Ryu, S. J. Kim, K. J. Kim, and K. M. Moon, An Electrochemical Study on the Effect of Salt Affecting to Corrosion Behavior of Concrete Reinforced Steel in Natural Sea Water, J. Kor. Soc. Oce. Eng., 14(4), 23 (2000).
  4. J. K. Chon and Y. k. Kim, Inhibition Effect of Amino Acids on the Corrosion of Aluminum in Artificial Sea Water, J. Kor. Electrochem. Soc., 12(4), 311 (2009). https://doi.org/10.5229/JKES.2009.12.4.311
  5. D. S. Woo, B. T. Myung, J. G. Moon, and K. S. Moon, Corrosion Control in the Open Recirculating Cooling System Using Corrosion Inhibitor, J. KSEE., 26(10), 1150 (2004).
  6. A. Yildirim and M. Cetin, Synthesis and evalution of new long alkyl side chain acetamide, isoxazolidine and isoxazoline derivatives as corrosion inhibitors, Corr. Sci., 50, 155 (2008). https://doi.org/10.1016/j.corsci.2007.06.015
  7. K. K. Baek and M. H. Ahn, Evalution of Combined Effect of Organic and Inorganic Inhibitors on The Metals used in Absorption Chiller System, J. Corros. Sci. Soc. Kor., 29(4), 217 (2000).
  8. M. Forsyth, A. Phanasgaonkar and B. W. Cherry, Migratory Corrosion Inhibitors for Corrosion Control in Reinforced Concrete, 9th Eur. Symp. on Corrosion Inhibitors, Ferrara: 2000, p. 335.
  9. A. Phanasgaonkar, B. Cherry and M. Forsyth, Organic Corrosion Inhibitors; How do They Inhibit and can They Really Migrate through Concrete?, Australian Maritime Engineering Cooperative Research Centre, Monash University, (1997).
  10. K. H. Park, Electrochemistry Characterization of Stainless Steel in ethanolamine Solution Containing an Alkyl Group Using Cyclic Voltammetry, J. Kor. Oil Chem. Soc., 31(1), 66 (2014). https://doi.org/10.12925/jkocs.2014.31.1.66
  11. K. H. Park, A Study on the Inhibition Effect of Metal Corrosion Using Organic Copmpound Containing an Amine Group, J. Kor. Oil Chem. Soc., 27(3), 361 (2010).
  12. K. H. Park, Electrochemistry Characterization of Metal Using Monoethanolamine as Corrosion Inhibitor, J. Kor. Oil Chem. Soc., 29(1), 88 (2012).
  13. E. E. Stansbury and R. A. Buchman, "Fundamentals of electrochemical corrosion", P. 63, ASM International, Ohio, U.S.A. (2004).
  14. K. H. Park, Effect of Corrosion Inhibition of Metals Using Organic Compound Containing Amine Group, J. Kor. Oil Chem. Soc., 27(3), 88 (2009).
  15. D. S. Park, Study for Electrode Reaction Characteristics by Cyclic Voltammetry, Poly. Sci. Tec., 14, 356 (2003).
  16. K. H. Park, Electrochemistry Characterization of Metal Using Corrosion Inhibitors Containing Amide Functional Group, J. Kor. Oil Chem. Soc., 28(1), 48 (2011).