DOI QR코드

DOI QR Code

Introduction to Helium Leak Detection Techniques for Cryogenic Systems

  • Kim, Heetae (Rare Isotope Science Project, Institute for Basic Science) ;
  • Chang, Yong Sik (Department of e-Business, Hanshin University) ;
  • Kim, Wookang (Rare Isotope Science Project, Institute for Basic Science) ;
  • Jo, Yong Woo (Rare Isotope Science Project, Institute for Basic Science) ;
  • Kim, Hyung Jin (Rare Isotope Science Project, Institute for Basic Science)
  • Received : 2015.07.01
  • Accepted : 2015.07.10
  • Published : 2015.07.30

Abstract

Many welding processes are performed to construct cryogenic system. Leak-tight for the cryogenic system is required at low temperature environment. Helium leak detection techniques are commonly used to find leak for the cryogenic system. The helium leak detection techniques for spraying, sniffing and pressurizing techniques are introduced. High vacuum is also necessary to use helium leak detector. So, types of fluid flow, effective temperature, conductance and pumping speed are introduced for vacuum pumping. Leak test procedure is shown for pipe welding, cryomodule and low temperature test. Cryogenic seals which include copper gasket, helicoflex gasket and indium are investigated.

Keywords

References

  1. H. Kim, K. Seo, B. Tabbert, and G.A. Williams, Journal of Low Temperature Physics 121, 621-626 (2000).
  2. H. Kim, K. Seo, B. Tabbert, and G.A. Williams, Europhysics Letters 58, 395-400 (2002). https://doi.org/10.1209/epl/i2002-00652-0
  3. H. Kim, P. A. Lemieux, D. J. Durian, and G.A. Williams, Phys. Rev. E 69, 0614081-0614084 (2004).
  4. W. Steckelmacher and M.W. Lucas, J. Phys. D: Appl. Phys., 16, 1453-1460 (1983). https://doi.org/10.1088/0022-3727/16/8/012
  5. L. Fustoss and G Toth, Vacuum, 40, 43-46 (1990). https://doi.org/10.1016/0042-207X(90)90115-F
  6. B.V. Zhmud, F. Tiberg and K. Hallstensson, Journal of Colloid and Interface Science, 228, 263-269 (2000). https://doi.org/10.1006/jcis.2000.6951
  7. G.Y. Hsiung, C.C. Chang, Y.C. Yang, C.H. Chang, H.P. Hsueh, S.N. Hsu and J.R. Chen, Applied Science and Convergence Technology, 23, 309-316 (2014). https://doi.org/10.5757/ASCT.2014.23.6.309
  8. S. J.Yu, S. J. Youn, and H. Kim, Physica B 405, 638-641 (2010). https://doi.org/10.1016/j.physb.2009.09.079
  9. H. Kim, S. C. Lim, and Y. H. Lee, Physics Letters A 375, 2661-2664 (2011). https://doi.org/10.1016/j.physleta.2011.05.051
  10. H. Kim, S. J. Youn, and S. J. Yu, Journal of the Korean Physical Society 56, 554-557(2010). https://doi.org/10.3938/jkps.56.554
  11. H. Kim, M.S. Han, D. Perello, and M. Yun, Infrared Physics & Technology 60, 7-9 (2013). https://doi.org/10.1016/j.infrared.2013.03.003
  12. H. Kim, C.S. Park, and M.S. Han, Optics Communications 325, 68-70 (2014). https://doi.org/10.1016/j.optcom.2014.04.004
  13. H. Kim, W. K. Kim, G.T. Park, C. S. Park, and H. D. Cho, Infrared Physics &Technology 67, 49-51(2014). https://doi.org/10.1016/j.infrared.2014.07.007
  14. H. Kim, W. K. Kim, G.T. Park, I. Shin, S. Choi and D. O. Jeon, Infrared Physics & Technology 67, 600-603 (2014). https://doi.org/10.1016/j.infrared.2014.10.003

Cited by

  1. Vacuum Test of Cavity with Liquid Nitrogen vol.24, pp.5, 2015, https://doi.org/10.5757/ASCT.2015.24.5.132
  2. Low Temperature Test of HWR Cryomodule vol.25, pp.3, 2016, https://doi.org/10.5757/ASCT.2016.25.3.47