DOI QR코드

DOI QR Code

Identification and Characterization of the Antifungal Substances of a Novel Streptomyces cavourensis NA4

  • Pan, Hua-Qi (Institute of Applied Ecology, Chinese Academy of Sciences) ;
  • Yu, Su-Ya (Institute of Applied Ecology, Chinese Academy of Sciences) ;
  • Song, Chun-Feng (Institute of Applied Ecology, Chinese Academy of Sciences) ;
  • Wang, Nan (Institute of Applied Ecology, Chinese Academy of Sciences) ;
  • Hua, Hui-Ming (Department of Natural Products Chemistry, Shenyang Pharmaceutical University) ;
  • Hu, Jiang-Chun (Institute of Applied Ecology, Chinese Academy of Sciences) ;
  • Wang, Shu-Jin (Institute of Applied Ecology, Chinese Academy of Sciences)
  • 투고 : 2014.07.09
  • 심사 : 2014.09.29
  • 발행 : 2015.03.28

초록

A new actinomycete strain NA4 was isolated from a deep-sea sediment collected from the South China Sea and showed promising antifungal activities against soilborne fungal pathogens. It was identified as Streptomyces cavourensis by morphological, physiological, and phylogenetic analyses based on its 16S rRNA gene sequence. The main antifungal components were isolated and identified from the fermentation culture as bafilomycins B1 and C1. These compounds exhibited significant antifungal activities and a broad antifungal spectrum. The results suggest that the Streptomyces cavourensis NA4 and bafilomycins B1 and C1 could be used as potential biocontrol agents for soilborne fungal diseases of plants.

키워드

참고문헌

  1. Anees M, Edel-Hermann V, Steinberg C. 2010. Build up of patches caused by Rhizoctonia solani. Soil Biol. Biochem. 42: 1661-1672. https://doi.org/10.1016/j.soilbio.2010.05.013
  2. Carr G, Williams DE, Diìaz-Marrero AR, Patrick BO, Bottriell H, Balgi AD, et al. 2009. Bafilomycins produced in culture by Streptomyces spp. isolated from marine habitats are potent inhibitors of autophagy. J. Nat. Prod. 73: 422-427. https://doi.org/10.1021/np900632r
  3. Chen L, Wang N, Wang X, Hu J, Wang S. 2010. Characterization of two anti-fungal lipopeptides produced by Bacillus amyloliquefaciens SH-B10. Bioresour. Technol. 101: 8822-8827. https://doi.org/10.1016/j.biortech.2010.06.054
  4. Frändberg E, Petersson C, Lundgren LN, Schnürer J. 2000. Streptomyces halstedii K122 produces the antifungal compounds bafilomycin B1 and C1. Can. J. Microbiol. 46: 753-758. https://doi.org/10.1139/w00-050
  5. Fravel D, Olivain C, Alabouvette C. 2003. Fusarium oxysporum and its biocontrol. New Phytol. 157: 493-502. https://doi.org/10.1046/j.1469-8137.2003.00700.x
  6. Kim B, Hwang B. 2007. Microbial fungicides in the control of plant diseases. J. Phytopathol. 155: 641-653. https://doi.org/10.1111/j.1439-0434.2007.01314.x
  7. Li J, Lu C, Shen Y. 2010. Macrolides of the bafilomycin family produced by Streptomyces sp. CS. J. Antibiot. 63: 595-599. https://doi.org/10.1038/ja.2010.95
  8. Peng JN, Shen XY, El Sayed KA, Dunbar DC, Perry TL, Wilkins SP, Hamann MT. 2003. Marine natural produc ts as prototype agrochemical agents. J. Agric. Food Chem. 51: 2246-2252. https://doi.org/10.1021/jf0207880
  9. Poli A, Gilardi G, Spadaro D, Gullino M, Garibaldi A. 2012. Molecular characterization of Fusarium oxysporum f.sp. cichorii pathogenic on chicory (Cichorium intybus). Phytoparasitica 40: 383-391. https://doi.org/10.1007/s12600-012-0239-z
  10. Shanzhao J, Ling L, Zhaopu L, Xiaohua L, Hongbo S, Jiayao C. 2013. Characterization of marine Pseudomonas spp. antagonist towards three tuber-rotting fungi from Jerusalem artichoke, a new industrial crop. Ind. Crops Prod. 43: 556-561. https://doi.org/10.1016/j.indcrop.2012.07.038
  11. Silva L, Taketani R, Melo I, Goodfellow M, Zucchi T. 2013. Streptomyces araujoniae sp. nov.: an actinomycete isolated from a potato tubercle. Antonie Van Leeuwenhoek 103: 1235-1244. https://doi.org/10.1007/s10482-013-9901-9
  12. Tareq FS, Kim JH, Lee MA, Lee HS, Lee JS, Lee YJ, Shin HJ. 2013. Antimicrobial gageomacrolactins characterized from the fermentation of the marine-derived bacterium Bacillus subtilis under optimum growth conditions. J. Agric. Food Chem. 61: 3428-3434. https://doi.org/10.1021/jf4009229
  13. Uyeda M, Kondo K, Ito A, Yokomizo K, Kido Y. 1995. A new antiherpetic agent produced by Streptomyces sp. strain no. 758. J. Antibiot. 48: 1234. https://doi.org/10.7164/antibiotics.48.1234
  14. Wang X, Radwan MM, Taraìwneh AH, Gao J, Wedge DE, Rosa LH, et al. 2013. Antifungal activity against plant pathogens of metabolites from the endophytic fungus Cladosporium cladosporioides. J. Agric. Food Chem. 61: 4551-4555. https://doi.org/10.1021/jf400212y
  15. Werner G, Hagenmaier H, Drautz H, Baumgartner A, Zahner H. 1984. Metabolic products of microorganisms. 224. Bafilomycins, a new group of macrolide antibiotics. Production, isolation, chemical structure and biological activity. J. Antibiot. 37: 110-117. https://doi.org/10.7164/antibiotics.37.110
  16. Xie L, Jiang S, Zhu H, Sun W, Ouyang Y, Dai S, Li X. 2008. Potential inhibitors against Sclerotinia sclerotiorum, produced by the fungus Myrothecium sp. assoc iated with the marine sponge Axinella sp. Eur. J. Plant Pathol. 122: 571-578. https://doi.org/10.1007/s10658-008-9326-x
  17. Xu WP, Zhang DJ, Si CC, Tao LM. 2013. Antifungal macrolides from Streptomyces cavourensis YY01-17. Chem. Nat. Compounds 49: 988-989. https://doi.org/10.1007/s10600-013-0804-9
  18. Yoon MY, Cha B, Kim JC. 2013. Recent trends in studies on botanical fungicides in agriculture. Plant Pathol. J. 29: 1-9. https://doi.org/10.5423/PPJ.RW.05.2012.0072
  19. Zhang DJ, Wei G, Wang Y, Si CC, Tian L, Tao LM, Li YG. 2011. Bafilomycin K, a new antifungal macrolide from Streptomyces flavotricini Y12-26. J. Antibiot. 64: 391-393. https://doi.org/10.1038/ja.2011.12

피인용 문헌

  1. Inhibition of Monoamine Oxidase by Anithiactins from Streptomyces sp. vol.25, pp.9, 2015, https://doi.org/10.4014/jmb.1505.05020
  2. Deep Sea Actinomycetes and Their Secondary Metabolites vol.8, pp.None, 2015, https://doi.org/10.3389/fmicb.2017.00760
  3. Antimicrobial and Cytotoxic Properties of Bioactive Metabolites Produced by Streptomyces cavourensis YBQ59 Isolated from Cinnamomum cassia Prels in Yen Bai Province of Vietnam vol.75, pp.10, 2015, https://doi.org/10.1007/s00284-018-1517-x
  4. Microorganismos marinos extremófilos con potencial en bioprospección vol.7, pp.2, 2015, https://doi.org/10.15446/rev.fac.cienc.v7n2.67360
  5. Secondary Metabolites from Deep-Sea Derived Microorganisms vol.26, pp.None, 2015, https://doi.org/10.2174/0929867326666190618153950
  6. Genome mining and metabolic profiling illuminate the chemistry driving diverse biological activities of Bacillus siamensis SCSIO 05746 vol.103, pp.10, 2015, https://doi.org/10.1007/s00253-019-09759-2
  7. Rational Design of Hybrid Natural Products by Utilizing the Promiscuity of an Amide Synthetase vol.14, pp.8, 2015, https://doi.org/10.1021/acschembio.9b00351
  8. Biotechnological Potential of Bacteria Isolated from the Sea Cucumber Holothuria leucospilota and Stichopus vastus from Lampung, Indonesia vol.17, pp.11, 2015, https://doi.org/10.3390/md17110635
  9. Exploring the Potential of Natural Products From Mangrove Rhizosphere Bacteria as Biopesticides Against Plant Diseases vol.103, pp.11, 2015, https://doi.org/10.1094/pdis-11-18-1958-re
  10. Critical Assessment of Streptomyces spp. Able to Control Toxigenic Fusaria in Cereals: A Literature and Patent Review vol.20, pp.24, 2019, https://doi.org/10.3390/ijms20246119
  11. Taxonomic characterizations of soil Streptomyces cavourensis DW102 and its activity against fungal pathogens vol.12, pp.4, 2020, https://doi.org/10.4103/jpbs.jpbs_304_20
  12. Antiviral Bafilomycins from a Feces-Inhabiting Streptomyces sp. vol.84, pp.2, 2015, https://doi.org/10.1021/acs.jnatprod.0c01243
  13. Cytotoxic and antimicrobial activities of secondary metabolites isolated from the deep-sea-derived Actinoalloteichus cyanogriseus 12A22 vol.11, pp.6, 2021, https://doi.org/10.1007/s13205-021-02846-0
  14. Antifungal activity and mechanism of action of dichloromethane extract fraction A from Streptomyces libani against Aspergillus fumigatus vol.131, pp.3, 2015, https://doi.org/10.1111/jam.15040