DOI QR코드

DOI QR Code

카자흐스탄 구리 슬래그의 광물학적, 화학적 특성 및 구리와 철의 용출 특성

The Mineralogical and Chemical Characteristics of Slag from Kazakhstan and Leaching of Cu and Fe

  • 김봉주 (조선대학교 에너지.자원공학과) ;
  • 조강희 (조선대학교 에너지.자원공학과) ;
  • 신승한 (한국광해관리공단 광해기술연구소) ;
  • 최낙철 (서울대학교 지역시스템공학과) ;
  • 박천영 (조선대학교 에너지.자원공학과)
  • Kim, Bong-Ju (Department of Energy and Resource Engineering, Chosun University) ;
  • Cho, Kang-Hee (Department of Energy and Resource Engineering, Chosun University) ;
  • Shin, Seung-Han (Technology Research Center, Mine Reclamation Corporation) ;
  • Choi, Nag-Choul (Department of Rural Systems Engineering/Research Institute for Agriculture and Life Science, Seoul National University) ;
  • Park, Cheon-Young (Department of Energy and Resource Engineering, Chosun University)
  • 투고 : 2015.02.09
  • 심사 : 2015.03.25
  • 발행 : 2015.03.31

초록

구리 슬래그에 대한 광물학적 및 화학적 특성을 연구하기 위하여 광학현미경, SEM/EDS, EPMA, AAS 및 XRD분석을 수행하였다. 또한 이 슬래그가 Cu의 잠재적인 금속자원로서의 가능성이 있는지 조사하기 위하여 황산 용출-실험을 수행하였다. 슬래그에는 철감람석, 크롬철석, 반동석과 황동석이 포함되어 있는 것을 확인하였다. 침상의 철감람석과 뼈대구조의 자형 크롬철석이 주로 슬래그를 형성하고 있으며 많은 양의 반동석과 황동석이 포함되어 있었다. 슬래그에 Fe와 Cu가 각각 18.37%와 0.93%로 함유되었다. 황산 용출-실험을 수행한 결과, 용출액의 농도와 용출온도가 증가할수록, 입도가 감소할수록 Cu와 Fe 용출률은 증가하였다. 본 실험조건하에서는 Cu와 Fe가 최적으로 용출되는 조건은 32 mesh에서, 2.0 M의 황산농도에서 그리고 용출온도 $60^{\circ}C$에서였다. 따라서 향후, 용출규모를 증가시킨다면 슬래그는 구리의 잠재적 대체금속자원이 될 것으로 예상된다.

In order to study the mineralogical and chemical characteristics of copper slag, optical microscopy, SEM/EDS, EPMA, AAS and XRD analyses were carried out. In addition, sulfuric acid leaching experiments were performed to investigate the potential of the slag as a copper resource. It was confirmed that fayalite, chromite, bornite and chalcopyrite were contained in the slag. The slag mainly consisted of acicular fayalite and skeletal lath -euhedral chromite crystals. Also a very large amount of bornite and chalcopyrite grains were contained in the slag. The content of Fe and Cu in the slag was 18.37% and 0.93%, respectively. As a result of sulfuric acid leaching experiments, the leaching rates of Cu and Fe were increased through decreasing the slag particle size, increasing the sulfuric acid concentration and the leaching temperature. The maximum efficiency of Cu and Fe leaching were obtained under the conditions of particle size of 32 mesh, sulfuric acid concentration of 2.0 M, and leaching temperature of $60^{\circ}C$. Accordingly, it is expected that the slag could be available as a potential and alternative resource of metallic copper.

키워드

참고문헌

  1. Altundogan, H.S. and Tumen, F. (1997) Metal recovery from copper converter slag by roasting with ferric sulphate. Hydrometallurgy, 44, 261-267. https://doi.org/10.1016/S0304-386X(96)00038-2
  2. Altundogan, H.S., Boyrazli, M., and Tumen, F. (2004) A study on the sulphuric acid leaching of copper converter slag in the presence of dichromate. Minerals Engineering, 17, 464-467.
  3. Arslan, C. and Arslan, F. (2002) Recovery of copper, cobalt, and zinc from copper smelter and converter slags. Hydrometallurgy, 67, 1-7. https://doi.org/10.1016/S0304-386X(02)00139-1
  4. Banza, A.N., Gock, E., and Kongolo, K. (2002) Base metals recovery from copper smelter slag by oxidising leaching and solvent extraction. Hydrometallurgy, 67, 63-69. https://doi.org/10.1016/S0304-386X(02)00138-X
  5. Carranza, F., Lglesias, N., Mazuelos, A., Romero, R., and Forcat, O. (2009) Ferric leaching of copper slag flotation taillings, Minerals Engineering, 22, 107-110. https://doi.org/10.1016/j.mineng.2008.04.010
  6. Cho, K.H., Kim B.J., Choi, N.C., and Park, C.Y. (2014) The Variation of Cu Recovery by Electrowinning Conditions and Their Mineralogical Characteristics from Cathodic Deposition-powdered Copper. J. Miner. Soc. Korea, 27(4), 183-195 (in Korean with English abstract). https://doi.org/10.9727/jmsk.2014.27.4.183
  7. Craig, J.R. and Vaughan, D.J. (1981) Ore microscopy and ore petrography. John Wiley & Sons, New York, 406p.
  8. Davenport, W.G., King, M., Schlesinger, M., and Biswas, A.K. (2002) Extractive metallurgy of copper. Pergamon, Oxford, 432p.
  9. Ghorbani, Y., Becker, M., Mainza, A., Franzidis, J.P., and Petersen, J. (2011) Large particle effects in the chemical/biochemical heap leach processes-a review. Minerals Engineering, 24, 1172-1184. https://doi.org/10.1016/j.mineng.2011.04.002
  10. Gorai, B., Jana, R.K., and Premchand. (2003) Characteristics and utilisation of copper slag-a review. Resources Conservation and Recycling, 39, 299-313. https://doi.org/10.1016/S0921-3449(02)00171-4
  11. Kim B.J., Cho, K.H., Choi, N.C., and Park, C.Y. (2014a) The Characteristic Dissolution of Valuable Metals from Mine-Waste Rock by Heap Bioleaching, and the Recovery of Metallic Copper Powder with Fe Removal and Electrowinning. J. Miner. Soc. Korea, 27(4), 207-222 (in Korean with English abstract). https://doi.org/10.9727/jmsk.2014.27.4.207
  12. Kim, B.J., Cho, K.H., Jo, J.Y., Choi, N.C., and Park, C.Y. (2014b), The characteristic of Te recovery in gold concentrate using electrolysis, Economic and Environmental Geology, 47, 645-655 (in Korean with English abstract). https://doi.org/10.9719/EEG.2014.47.6.645
  13. Kim, B.K., Kim, J.Y., Kim, J.S., Bang, B.R., Yu, T.U., Hwang, J.H., Peck, J.H., and Park, D.H. (2014c) Study on the optimization of 1MW plasma melting system for the recycling of copper in copper slag. The Korean Society of Mechanical Engineers 2014 symposium, 317-318 (in Korean with English abstract).
  14. KOMIS-http://www.kores.net/main.do
  15. Lee, J.E. (2014) Recovery of Fe from non-ferrous smelting slag using electrochemical process. M.D Thesis, Ulsan university, Ulsan, 51p (in Korean with English abstract).
  16. Li, Y., Perederiy, I., and Papangelakis, V.G. (2008) Cleaning of waste smelter slags and recovery of valuable metals by pressure oxidative leaching. Journal Hazardous Materials, 152, 607-615. https://doi.org/10.1016/j.jhazmat.2007.07.052
  17. Parsons, M.B., Bird, D.K., Einaudi, M.T., and Alpers, C.N. (2001) Geochemical and mineralogical controls on trace element release from the Penn Mine base-metal slag dump, California. Applied Geochemistry, 16, 1567-1593. https://doi.org/10.1016/S0883-2927(01)00032-4
  18. Piatak, N., Seal, R.R., and Hammarstrom, J.M. (2004) Mineralogical and geochemical controls on the release of trace elements from slag produced by base-and precious-metal smelting at abandoned mine sites. Applied Geochemistry, 19, 1039-1064. https://doi.org/10.1016/j.apgeochem.2004.01.005
  19. Pracejus, B., 2008, The ore minerals under the microscope, Elsevier, New York, 875p.
  20. Qin, W.Q., Zhang, Y.Q., Li, W.Z., and Wang, J. (2008) Simulated small-scale plot heap leaching of low-grade copper sulfide ore with selective extraction of copper. Transactions of Nonferrous Metals Society of China, 18, 1463-1467. https://doi.org/10.1016/S1003-6326(09)60026-1
  21. Shin, H.J. and Lee, C.J. (2012) Atlas of rock-forming minerals in thin section, Kyoyookbook, Seoul, 379p.
  22. Shtiza, A., Swennen, R., and Tashko, A. (2005) Chromium and nickel distribution in soils, active river, overbank sediments and dust around the Burrel chromium smelter(Albania). Journal of Geochemical Exploration, 87, 92-108. https://doi.org/10.1016/j.gexplo.2005.07.005
  23. Veglio, F., Trifoni, M., Pagnanelli, F., and Toro, L. (2001) Shrinking core model with variable activation energy: a kinetic model of manganiferous ore leaching with sulphuric acid and lactose. Hydrometallurgy, 60, 167-179. https://doi.org/10.1016/S0304-386X(00)00197-3
  24. Vitkova, M., Ettler, V., Johan, Z., Kribek, B., Sebek, O., and Mihaljevic, M. (2010) Primary and secondary phase in copper-cobalt smelting slags from the Copperbelt province, Zambia. Mineralogical Magazine, 74, 581-600. https://doi.org/10.1180/minmag.2010.074.4.581
  25. Wei, X., Viadero, Jr, R.C., and Buzby, K.M. (2005) Recovery of iron and aluminum from acid mine drainage by selective precipitation. Environmental Engineering Science, 22, 745-755. https://doi.org/10.1089/ees.2005.22.745
  26. Yang, Z., Rui-lin, M., Wang-don, N., and Hui, W. (2010) Selective leaching of base metals from copper smelter slag. Hydrometallurgy, 103, 25-29. https://doi.org/10.1016/j.hydromet.2010.02.009