DOI QR코드

DOI QR Code

Characterization of Behavior of Colloidal Zero-Valent Iron and Magnetite in Aqueous Environment

나노크기의 교질상 영가철 및 자철석에 대한 수용상의 거동특성

  • Lee, Woo Chun (Future Environment Research Center, Korea Institute of Toxicology) ;
  • Kim, Soon-Oh (Department of Geology and Research Institute of Natural Science, Gyeongsang National University) ;
  • Kim, Young-Ho (Department of Geology and Research Institute of Natural Science, Gyeongsang National University)
  • 이우춘 (안전성평가연구소, 미래환경연구센터) ;
  • 김순오 (경상대학교 자연과학대학 지질과학과 및 기초과학연구소) ;
  • 김영호 (경상대학교 자연과학대학 지질과학과 및 기초과학연구소)
  • Received : 2015.06.01
  • Accepted : 2015.06.29
  • Published : 2015.06.30

Abstract

Nano-sized iron colloids are formed as acid mine drainage is exposed to surface environments and is introduced into surrounding water bodies. These iron nanomaterials invoke aesthetic contamination as well as adverse effects on aqueous ecosystems. In order to control them, the characteristics of their behaviour should be understood first, but the cumulative research outputs up to now are much less than the expected. Using zero-valent iron (ZVI) and magnetite, this study aims to investigate the behaviour of iron nanomaterials according to the change in the composition and pH of background electrolyte and the concentration of natural organic matter (NOM). The size and surface zeta potential of iron nanomaterials were measured using dynamic light scattering. Characteristic behaviour, such as aggregation and dispersion was compared each other based on the DLVO (Derjaguin, Landau, Verwey, and Overbeek) theory. Whereas iron nanomaterials showed a strong tendency of aggregation at the pH near point of zero charge (PZC) due to electrostatic attraction between particles, their dispersions became dominant at the pH which was higher or lower than PZC. In addition, the behaviour of iron nanomaterials was likely to be more significantly influenced by cations than anions in the electrolyte solutions. Particularly, it was observed that divalent cation influenced more effectively than monovalent cation in electrostatic attraction and repulsion between particles. It was also confirmed that the NOM enhanced the dispersion nanomaterials with increasing the negative charge of nanomaterials by coating on their surface. Under identical conditions, ZVI aggregated more easily than magnetite, and which would be attributed to the lower stability and larger reactivity of ZVI.

광산배수가 지표에 노출되거나 주변 수계로 유입됨에 따라 나노크기의 철 교질물질이 형성되며, 이러한 철 교질물질은 심미적 오염을 발생시킬 뿐만 아니라 수생태계에도 악영향을 미친다. 이를 제어하기 위해 철 나노물질의 거동특성을 파악하는 것이 매우 중요한데, 아직까지 이에 대한 연구가 미흡하다. 본 연구는 영가철과 자철석을 이용하여 배경용액의 pH와 조성, 그리고 자연유기물에 따른 철 나노물질의 거동특성을 고찰하기 위해 수행되었다. 이를 위해 동적광산란분석기를 이용하여 철 나노물질의 입자크기와 표면 제타전위를 측정하였으며, DLVO (Derjaguin, Landau, Verwey, and Overbeek) 이론에 적용하여 응집 및 분산 등의 거동특성을 비교하였다. 철 나노물질은 영전하점 pH 근처에서는 입자간의 전기적 인력으로 인한 응집이 발생되며, 그보다 pH가 낮거나 높으면 전기적 반발력에 의해 분산이 잘되는 것을 확인하였다. 배경용액 내 양이온이 음이온보다 거동특성에 더 큰 영향을 끼치는 것을 확인하였으며, 특히 1가 양이온보다 2가 양이온이 입자표면간의 전기적인 인력 및 반발력에 더 큰 영향을 주는 것을 알 수 있었다. 수용상의 자연유기물은 철 나노물질을 코팅함으로써 표면을 음전하로 띠게 하여 분산이 잘 되게 하는 것을 확인하였다. 동일한 환경조건에서 자철석보다 영가철이 응집이 더 잘 되는 것으로 나타났는데, 이는 영가철의 낮은 안정성과 빠른 반응성으로 인해 철 산화물로 변질되기 때문인 것으로 판단된다.

Keywords

References

  1. Baalousha, M. (2009) Aggregation and disaggregation of iron oxide nanoparticles: Influence of particle concentration, pH and natural organic matter. Science of the Total Environment, 407, 2093-2101. https://doi.org/10.1016/j.scitotenv.2008.11.022
  2. Chekli, L., Phuntsho, S., Roy, M., Lombi, E., Donner, E., and Shon, H.K. (2013) Assessing the aggregation behaviour of iron oxide nanoparticles under relevant environmental conditions using a multi-method approach. Water Research, 47, 4585-4599. https://doi.org/10.1016/j.watres.2013.04.029
  3. Chorover, J. and Amistadi, M.K. (2001) Reaction of forest floor organic matter at goethite, birnessite and smectite surfaces. Geochimica et Cosmochimica Acta, 65, 95-109. https://doi.org/10.1016/S0016-7037(00)00511-1
  4. Derjaguin, B. and Landau, L. (1941) Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochim URSS, 14, 633-662.
  5. Dickson, D., Liu, G., Li, C., Tachievc, G., and Cai, Y. (2012) Dispersion and stability of bare hematite nanoparticles: effect of dispersion tools, nanoparticle concentration, humic acid and ionic strength. Science of the Total Environment, 419, 170-177. https://doi.org/10.1016/j.scitotenv.2012.01.012
  6. Fabrega, J., Luoma, S.N., Tyler, C.R., Galloway, T.S., and Lead, J.R. (2011) Silver nanoparticles behaviour and effects in the aquatic environment. Environment International, 37, 517-531. https://doi.org/10.1016/j.envint.2010.10.012
  7. Faure, B., Salazar-Alvarez, G., and Bergstr, L. (2011) Hamaker constants of iron oxide nanoparticles. Langmuir, 27, 8659-8664. https://doi.org/10.1021/la201387d
  8. Filius, J.D., Lumsdon, D.G., Meeussen, J.C.L., Hiemstra, T., and van Riemsdijk, W.H. (2000) Adsorption of fulvic acid on goethite. Geochimica et Cosmochimica Acta, 64, 51-60. https://doi.org/10.1016/S0016-7037(99)00176-3
  9. Hassellov, M., Readman, J.W., Ranville, J.F., and Tiede, K. (2008) Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles. Ecotoxicology, 17, 344-361. https://doi.org/10.1007/s10646-008-0225-x
  10. Hu, J.D., Zevi, Y., Kou, X.M., Xiao, J., Wang, X.J., and Jin, Y. (2010) Effect of dissolved organic matter on the stability of magnetite nanoparticles under different pH and ionic strength conditions. Science of the Total Environment, 408, 3477-3489. https://doi.org/10.1016/j.scitotenv.2010.03.033
  11. Illes, E. and Tombacz, E. (2004) The role of variable surface charge and surface complexation in the adsorption of humic acid on magnetite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 230, 99-109.
  12. Jeong, H.S., Lee, W.C., Cho, H.C., and Kim, S.O. (2008) Study on Adsorption Characteristics of Arsenic on Magnetite. Journal of the Mineralogical Society of Korea, 21, 425-434 (in Korean with English abstract).
  13. Jeong, U., Teng, X., Wang, Y., Yang, H., and Xia, Y. (2007) Superparamagnetic colloids: controlled synthesis and niche applications. Advanced Materials, 19, 33-60. https://doi.org/10.1002/adma.200600674
  14. Kanel, S.R., Manning, B., Charlet, L., and Choi, H. (2005) Removal of arsenic (III) from groundwater by nanoscale zerovalent iron. Environmental Science and Technology, 39, 1291-1298. https://doi.org/10.1021/es048991u
  15. Kim, E.S., Katherine, M.T., Benita, J.D., Jeffrey, R.D., and Igor, L.M. (2011) Analyzing Nanomaterial Bioconjugates: A Review of Current and Emerging Purification and Characterization Techniques. Analytical Chemistry, 83, 4453-4488. https://doi.org/10.1021/ac200853a
  16. Kim, J.J. and Kim, S.J. (2003) Mineralogy of ferrihydrite and schwertmannite from the acid mine drainage in the Donghae coal mine area. Journal of the Mineralogical Society of Korea, 16, 191-198 (in Korean with English abstract).
  17. LaConte, L., Nitin, N., and Bao, G. (2005) Magnetic nanoparticle probes. Materials Today, 8, 32-38.
  18. Lee, W.C., Kim, S.H., Lee, B.T., Lee, S.H., Kim, K.W., Shim, Y.S., Park, H.S., and Kim, S.O. (2013) The hydrogeochemical Study on the Passive Treatment System of the Dalseong Mine. Journal of The Korean Society for Geosystem Engineering, 50, 56-69 (in Korean with English abstract).
  19. Lin, M.Y., Lindsay, H.M., Weitz, D.A., Ball, R.C., Klein, R., and Meakin, P. (1989) Universality in colloid aggregation. Nature, 339, 360-362. https://doi.org/10.1038/339360a0
  20. Liu, J., Yu, S., Yin, Y., and Chao, J. (2011) Methods for separation, identification, characterization and quantification of silver nanoparticles. TrAC Trends in Analytical Chemistry, 33, 95-106.
  21. Machala, J., Zboril, R., and Gedanken, A. (2007) Amorphous iron(III) oxides: a review. Journal of Physical Chemistry, B 111, 4003-4018. https://doi.org/10.1021/jp064992s
  22. Nel, A., Xia, T., Madler, L., and Li, N. (2006) Toxic potential of materials at the nanolevel. Science, 311, 622-627. https://doi.org/10.1126/science.1114397
  23. Pang, S.C., Chin, S.F., and Anderson., M.A. (2007) Redox equilibria of iron oxides in aqueous-based magnetite dispersions: Effect of pH and redox potential. Journal of Colloid and Interface Science, 300, 94-101.
  24. Patel, D., Moon, J.Y., Chang, Y., Kim, T.J., and Lee, G.H. (2008) Poly(d,l-lactide-co-glycolide) coated superparamagnetic iron oxide nanoparticles: Synthesis, characterization and in vivo study as MRI contrast agent. Colloids and Surfaces A, 313-314, 91-94. https://doi.org/10.1016/j.colsurfa.2007.04.078
  25. Petosa, A.R., Jaisi, D.P., Quevedo, I.R., Elimelech, M., and Tufenkji, N. (2010) Aggregation and deposition of engineered nanomaterials in aquatic environments: Role of physicochemical interactions. Environmental Science and Technology, 44, 6532-6549. https://doi.org/10.1021/es100598h
  26. Phenrat, T., Saleh, N., Sirk, K., Tilton, R.D., and Lowry, G.V. (2007) Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersion. Environmental Science and Technology, 41, 284-290. https://doi.org/10.1021/es061349a
  27. Ralph, D.L., David, J.A.S., David, W.B., Laura, E.S., Richard, T.W., David, G.J., and Christopher, J.W. (2009) Treatment of arsenic, heavy metals, and acidity using a mixed ZVI-Compost PRB. Environmental Science and Technology, 43, 1970-1976. https://doi.org/10.1021/es802394p
  28. Ryu, C.S., Kim, Y.H., and Kim, J.J. (2014) Evaluation of purification efficiency of passive treatment systems for acid mine drainage and characterization of precipitates in Ilwal coal mine. ournal of the Mineralogical Society of Korea, 27, 97-105 (in Korean with English abstract). https://doi.org/10.9727/jmsk.2014.27.2.97
  29. Silva da, B.F., Perez, S., Gardinalli, P., Singhal, R.K., Mozeto, A.A., and Barcelo, D. (2011) Analytical chemistry of metallic nanoparticles in natural environments. TrAC Trends in Analytical Chemistry, 30, 528-540. https://doi.org/10.1016/j.trac.2011.01.008
  30. Teja, A.S. and Koh, P.Y. (2009) Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Progress in Crystal Growth and Characterization of Materials, 55, 22-45. https://doi.org/10.1016/j.pcrysgrow.2008.08.003
  31. Tiller, C.L. and O'Melia, C.R. (1993) Natural organic matter and colloidal stability: models and measurements. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 73, 89-102. https://doi.org/10.1016/0927-7757(93)80009-4
  32. Tipping, E. and Higgins, D.C. (1982) The effect of adsorbed humic substances on the colloid stability of hematite particles. Colloids and Surfaces, 5, 85-92. https://doi.org/10.1016/0166-6622(82)80064-4
  33. Verwey, E.J.W. and Overbeek, J.T.G. (1948) Theory of the Stability of Lyophobic Colloids. Elsevier publishing company INC, Amserdam.
  34. Xu, P., Zeng, G.M., Huang, D.L., Feng, C.L., Hu, S., Zhao, M.H., Lai, C., Wei, Z., Chao, H., Xie, G.X., and Liu, Z.F. (2012) Use of iron oxide nanomaterials in wastewater treatment: A review. Science of the Total Environment, 424, 1-10. https://doi.org/10.1016/j.scitotenv.2012.02.023
  35. Zhang, Y., Chen, Y. Westerhoff, P., Hristovski, K., and Crittenden, J.C. (2008) Stability of commercial metal oxide nanoparticles in water. Water Research, 42, 2204-2212. https://doi.org/10.1016/j.watres.2007.11.036

Cited by

  1. 교질상 적철석의 거동 특성: 수환경 내 이온 조성 및 세기, 자연 유기물이 미치는 영향 vol.53, pp.4, 2020, https://doi.org/10.9719/eeg.2020.53.4.347
  2. X-ray Diffraction Analysis of Clay Particles in Ancient Baekje Black Pottery: Indicator of the Firing Parameters vol.11, pp.11, 2015, https://doi.org/10.3390/min11111239