DOI QR코드

DOI QR Code

Study of Chip-level Liquid Cooling for High-heat-flux Devices

고열유속 소자를 위한 칩 레벨 액체 냉각 연구

  • Park, Manseok (Graduate School of NID Fusion Technology, Seoul National Univ. of Science and Technology) ;
  • Kim, Sungdong (Department of Mechanical System Design Engineering, Seoul National University of Science and Technology) ;
  • Kim, Sarah Eunkyung (Graduate School of NID Fusion Technology, Seoul National Univ. of Science and Technology)
  • 박만석 (서울과학기술대학교 NID융합기술대학원) ;
  • 김성동 (서울과학기술대학교 기계시스템디자인공학과) ;
  • 김사라은경 (서울과학기술대학교 NID융합기술대학원)
  • Received : 2015.05.14
  • Accepted : 2015.06.23
  • Published : 2015.06.30

Abstract

Thermal management becomes a key technology as the power density of high performance and high density devices increases. Conventional heat sink or TIM methods will be limited to resolve thermal problems of next-generation IC devices. Recently, to increase heat flux through high powered IC devices liquid cooling system has been actively studied. In this study a chip-level liquid cooling system with TSV and microchannel was fabricated on Si wafer using DRIE process and analyzed the cooling characteristics. Three different TSV shapes were fabricated and the effect of TSV shapes was analyzed. The shape of liquid flowing through microchannel was observed by fluorescence microscope. The temperature differential of liquid cooling system was measured by IR microscope from RT to $300^{\circ}C$.

고성능 소자의 전력밀도가 증가함에 따라 소자의 열 관리는 주요 핵심 기술로 부각되었고, 기존의 heat sink나 TIM(thermal interface material)으로는 소자의 열 문제를 해결하는데 한계가 있다. 이에 최근에는 열 유속(heat flux)을 증가시키고자 액체 냉각 시스템에 관한 연구가 활발히 진행되고 있으며, 본 연구에서는 TSV(through Si via)와 microchannel을 이용하여 칩 레벨 액체 냉각 시스템을 제작하고 시스템의 냉각 특성을 분석하였다. TSV와 microchannel은 Si 웨이퍼에 DRIE(deep reactive ion etching)을 이용하여 공정하였고, 3가지 다른 형상의 TSV를 제작하여 TSV 형상이 냉각 효율에 미치는 영향을 분석하였다. TSV와 microchannel 내 액체흐름 형상은 형광현미경으로 관찰하였고, 액체 냉각에 대한 효율은 실온에서 $300^{\circ}C$까지 시편을 가열하면서 적외선현미경을 이용하여 온도를 측정 분석하였다.

Keywords

References

  1. V. Venkatadri, B. Sammakia, K. Srihari, and D. Santos, "A Review of Recent Advances in Thermal Management in Three Dimensional Chip Stacks in Electronic Systems", Journal of Electronic Packaging., 133(4), 041011 (2011). https://doi.org/10.1115/1.4005298
  2. G. Huan, M. Bakir, A. Naeemi, H. Chen, and J. D. Meindl, "Power delivery for 3D chip stacks: physical modeling and design implication", Electrical Performance of Electronic Packaging (EPEPS), Atlanta, GA, 205, IEEE (2007).
  3. A. J. McNamara, Y. Joshi, and Z. M. Zhang, "Characterization of nanostructured thermal interface materials: A review", Int. J. Therm. Sci., 62, 2 (2012). https://doi.org/10.1016/j.ijthermalsci.2011.10.014
  4. J. Xu and T. S. Fisher, "Enhancement of thermal interface materials with carbon nanotube arrays", Int. J. Heat and Mass Trans., 49(9-10), 1658 (2006). https://doi.org/10.1016/j.ijheatmasstransfer.2005.09.039
  5. Sara N. Paisner, "Nanotechnology and methematical methods for high-performance thermal interface material", Global SMT & Package., 36 (2008).
  6. A. Hamdan, A. McLanahan, R. Richards, and C. Richards, "Characterization of a liquid-metal microdroplet thermal interface material", Exp. Therm. and Fluid Sci., 35(7), 1250 (2011). https://doi.org/10.1016/j.expthermflusci.2011.04.012
  7. J. Darabi, K. Ekula, "Development of a chip-integrated micro cooling device", Microelectron, J., 34(11), 1067 (2003). https://doi.org/10.1016/j.mejo.2003.09.010
  8. Y. M. Hung and Q. Seng, "Effects of deometric design on thermal performance of star-groove micro-heat pipes", Int. J. Heat and Mass Trans., 54(5-6), 1198 (2011). https://doi.org/10.1016/j.ijheatmasstransfer.2010.09.070
  9. M. Park, S. Kim, and S. E. Kim, "TSV Liquid Cooling System for 3D Integrated Circuits", J. Microelectron. Packag. Soc., 20(3), 1 (2013). https://doi.org/10.6117/KMEPS.2013.20.3.001
  10. J. Ayala, A. Sridhar, V. pangracious, D. Atienza, and Y. Leblebici, "Through silicon vias-based grid for thermal control in 3D chips", Nano-net, 90 (2009).
  11. C. Abbei, Y. Feng, B. Goplen, H. Mogal, T. Zhang, K. Bazargan, and S. Sapatnekar, "Placement and Routing in 3D Integrated Circuits", Design & Test of Computers, 22(6), 520 (2005). https://doi.org/10.1109/MDT.2005.150
  12. B. Goplen and S. Sapatnekar, "Thermal Via Placement in 3D ICs", Proc. International symposium on Physical design (ISPD), New York, NY, 167 (2005).
  13. H. Y. Zhang, D. Pinjila, T. N. Wong, and Y. K. Joshi, "Development of liquid cooling techniques for flip chip ball grid array packages with high flux heat dissipations", IEEE Trans. Comp. Packag. Tech., 28(1), 127 (2005). https://doi.org/10.1109/TCAPT.2004.843164
  14. G. Upadhya, M. Munch, P. Zhou, J. Hom, D. Werner, and M. McMaster, "Micro-scale liquid cooling system for high heat flux processor cooling applications", Semiconductor Thermal Measurement and Management Symposium (STMMS), Dallas, TX, 116, IEEE (2006).
  15. J. Li and G. P. Peterson, "Geometric optimization of a micro heat sink with liquid flow", IEEE Trans. Comp. Packag. Tech., 29(1), 145 (2006). https://doi.org/10.1109/TCAPT.2005.853170
  16. X. Wei and Y. Joshi, "Stacked microchannel heat sinks for liquid cooling of microelectronic components", J. Electron. Packag. Trans., 126(1), 60 (2004). https://doi.org/10.1115/1.1647124
  17. S. C. Mohapatra and D. Loikits, "Advances in liquid coolant technologies for electronics cooling", Semiconductor Thermal Measurement and Management Symposium (STMMS), 354, IEEE (2005).
  18. T. Chen and S. V. Garimella, "Flow boiling heat transfer to a dielectric coolant in a microchannel heat sink", IEEE Trans. Comp. Packag. Tech., 30(1), 24 (2007). https://doi.org/10.1109/TCAPT.2007.892063
  19. N. Khan, L. H. Yu, T. S. Pin, S. W. Ho, V. Kripesh, D. Pinjala J. H. Lau, and T. K. Chuan, "3-D Packaging With Through- Silicon Via (TSV) for Electrical and Fluidic Interconnections", IEEE Components, Packaging and Manufacturing Technology (CPMT), 3(2), 221 (2013). https://doi.org/10.1109/TCPMT.2012.2186297
  20. B. Dang, M. S. Bakir, and J. D. Meindl, "Integrated thermalfluidic I/O interconnects for an on-chip microchannel heat sink", Electron Device Letters (EDL), 27(2), 117, IEEE, (2006). https://doi.org/10.1109/LED.2005.862693
  21. M. Bakir, C. King, D. Sekar, H. Thacker, B. Dang, G. Huang, A. Naeemi, and J. D. Meindl, "3D Heterogeneous Integrated Systems: Liquid Cooling, Power Delivery, and Implementation", Custom Integrated Circuits Conference (CICC), San Jose, CA, 663, IEEE (2008).
  22. J. Ma, S. E. Kim, and S. Kim, "The effects of Cu TSV on the thermal conduction in 3D stacked IC", J. Microelectron. Packag. Soc., 21(3), 63 (2014). https://doi.org/10.6117/kmeps.2014.21.3.063

Cited by

  1. Experimental assessment of on-chip liquid cooling through microchannels with de-ionized water and diluted ethylene glycol vol.55, pp.6S3, 2016, https://doi.org/10.7567/JJAP.55.06JB02