DOI QR코드

DOI QR Code

모순 검증을 통한 다중 움직임 벡터 해상도 시그널링 방법

Signaling Method of Multiple Motion Vector Resolutions Using Contradiction Testing

  • 원광현 (성균관대학교 정보통신대학) ;
  • 박영현 (성균관대학교 정보통신대학) ;
  • 전병우 (성균관대학교 정보통신대학)
  • Won, Kwanghyun (Sungkyunkwan University, College of Information & Communication Engineering) ;
  • Park, Younghyeon (Sungkyunkwan University, College of Information & Communication Engineering) ;
  • Jeon, Byeungwoo (Sungkyunkwan University, College of Information & Communication Engineering)
  • 투고 : 2015.06.05
  • 심사 : 2015.07.04
  • 발행 : 2015.07.25

초록

대부분의 비디오 압축 표준들이 1/4 부화소 정밀도와 같은 고정 움직임 벡터 해상도를 사용하고 있는 데 반해, 다중 움직임 벡터 해상도를 지원하는 형태의 구조는 비디오 콘텐츠의 성질에 따라 필요로 하는 만큼의 움직임 벡터 정밀도를 효율적으로 사용할 수 있고, 더 정확한 움직임 예측자 생성이 가능해지므로, 부호화 효율을 향상할 수 있다는 장점이 있다. 그러나 다중 움직임 벡터 해상도 구조는 각각 움직임 벡터에 대해 선택된 움직임 벡터 해상도를 추가로 시그널링 해야 한다는 문제점이 있다. 본 논문에서는 움직임 벡터 해상도의 모순 검증 기반 시그널링 구조를 제안한다. 제안 방법은 여러 개의 후보 중, 각 움직임 벡터에 대해 최소크기의 부호화율을 갖는 움직임 벡터 해상도를 선택한다. 또한, 움직임 벡터 해상도의 시그널링에 따른 오버헤드를 줄이기 위해, 부호화기 및 복호화기 양쪽에서 미리 정의된 기준을 통한 모순 검증 과정을 수행하여 시그널링 할 필요가 없는 후보 움직임 벡터 해상도를 판별하는 과정을 수행한다. 실험 결과, 제안 구조가 고정 움직임 벡터 해상도 기반의 구조와 비교하여 $Bj{\o}ntegaard$ delta bit rate (BDBR)에서 평균 약 4.01%의 이득(최대 15.17%)을 달성함으로써 부호화되는 움직임 정보의 양을 줄이는 데 효과적이라는 것을 검증하였다.

Although most current video coding standards set a fixed motion vector resolution like quarter-pel accuracy, a scheme supporting multiple motion vector resolutions can improve the coding efficiency of video since it can allow to use just required motion vector accuracy depending on the video content and at the same time to generate more accurate motion predictor. However, the selected motion vector resolution for each motion vector is a signaling overhead. This paper proposes a contradiction testing-based signaling scheme of the motion vector resolution. The proposed method selects a best resolution for each motion vector among multiple candidates in such a way to produce the minimum amount of coded bits for the motion vector. The signaling overhead is reduced by contradiction testing that operates under a predefined criterion at both encoder and decoder with a purpose of pruning irrelevant candidate motion vector resolutions from signaling responsibility. Experimental results verified that the proposed scheme is effective in reducing coded motion information by achieving its $Bj{\o}ntegaard$ delta bit rate (BDBR) gain of about 4.01% on average (and up to 15.17%) compared to the conventional scheme with a fixed motion vector resolution.

키워드

참고문헌

  1. T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, "Overview of the H.264/AVC Video Coding Standard," IEEE Trans. on Circuits and Syst. for Video Tech., Vol. 13, no.7, pp. 560-576, Jul. 2003. https://doi.org/10.1109/TCSVT.2003.815165
  2. ITU-T and ISO/IEC JTC 1, "High Efficiency Video Coding," ITU-T Rec. H.265 and ISO/IEC 23008-2, Apr. 2013.
  3. ITU-T, "Video Codec for Audiovisual Services at px64 kbit/s," ITU-T Recommendation H.261, 1993.
  4. B. Girod, "Motion-compensating prediction with fractional-pel accuracy," IEEE Trans. Commun., Vol. 41, no. 4, pp. 604-612, Apr. 1993. https://doi.org/10.1109/26.223785
  5. T. Wedi, "Adaptive interpolation filter for motion compensated prediction," in Proc. 2002 IEEE Int. Conf. Image Process(Volume: 2), pp. II509-512, New York, USA, Sept. 2002.
  6. Y. Vatis and J. Ostermann, "Adaptive interpolation filter for H.264/AVC," IEEE Trans. Circuits Syst. Video Technol., Vol. 19, no. 2, pp. 179-192, Jan. 2009. https://doi.org/10.1109/TCSVT.2008.2009259
  7. ITU-T and ISO/IEC JTC 1, "Generic coding of moving pictures and associated audio information - Part 2: Video," ITU-T Recommendation H.262 - ISO/IEC 13818-2 (MPEG-2), 1994.
  8. J.-H. Nam, H.-H. Jo, D.-G. Sim, S.-Y. Lee, "Selective Interpolation filter for video coding," Journal of the Institute of Electronics and Information Engineers, Vol. 49, no. 1, pp. 58-66, Jan. 2012.
  9. T. Hwang, Y. Ahn, J. Ryu, D. Sim, "Optimized implementation of interpolation filters for HEVC encoder," Journal of the Institute of Electronics and Information Engineers, Vol. 50, no. 10, pp. 2651-2655, Oct. 2013.
  10. W.-J. Han, "Fast non-integer motion estimation for HEVC encoder," Journal of the Institute of Electronics and Information Engineers, Vol. 51, no. 12, pp. 2786-2795, Dec. 2014.
  11. JMKTA Software [Online]. Available: http://iphome.hhi.de/suehring/tml/download/KTA.
  12. J. Ribas-Corbera and D. L. Neuhoff, "Optimizing motion-vector accuracy in block-based video coding," IEEE Trans. Circuits Syst. Video Technol., Vol. 11, no. 4, pp. 497-511, Apr. 2001. https://doi.org/10.1109/76.915356
  13. X. Ji, D. Zhao, and W. Gao, "Block-wise adaptive motion accuracy based b-picture coding with low-complexity motion compensation," IEEE Trans. Circuits Syst. Video Technol., Vol. 17, no. 8, pp. 1085-1090, Aug. 2007. https://doi.org/10.1109/TCSVT.2007.903315
  14. L. Guo, P. Yin, Y. Zheng, X. Lu, Q. Xu, and J. Sole, "Adaptive motion vector resolution with implicit signaling," in Proc. IEEE International Conf. on Image Processing 2010, pp. 2057-2060, Hong Kong, Sept. 2010.
  15. M. Karczewicz, P. Chen, R. Joshi, X. Wang, W. -J. Chien, R. Panchal, Y. Reznik, M. Coban, and I. S. Chong, "A Hybrid Video Coder Based on Extended Macroblock Sizes, Improved Interpolation, and Flexible Motion Representation," IEEE Trans. Circuits Syst. Video Technol., Vol. 20, no. 12, pp. 1698-1708, Nov. 2010. https://doi.org/10.1109/TCSVT.2010.2092614
  16. W. Byers, "How Mathematicians Think: Using Ambiguity, Contradiction, and Paradox to Create Mathematics," Princeton University Press, NJ, 2007.
  17. L. A. Da Silva Cruz and J. W. Woods, "Adaptive motion vector quantization for video coding," in Proc. IEEE International Conf. on Image Processing 2000 (Volume: 2), pp. 867- 870, Vancouver, Canada, Sept. 2000.
  18. J. Yeh, M. Vetterli, and M. Khansari, "Motion compensation of motion vectors," in Proc. IEEE International Conf. on Image Processing 1995(Volume: 1), pp. 574-577, Washington, USA, Sept. 1995.
  19. G. Laroche, J. Jung, and B. Pesquet-Popescu, "RD Optimized Coding for Motion Vector Predictor Selection," IEEE Trans. Circuits Syst. Video Technol., Vol. 18, no. 12, pp. 1681-1691, Oct. 2008. https://doi.org/10.1109/TCSVT.2008.2004921
  20. J. Yang, K. Won, and B. Jeon, "Motion vector coding with selection of an optimal predictive motion vector," Opt. Eng., Vol. 48, no. 1, pp. 010501, Jan. 2009. https://doi.org/10.1117/1.3070632
  21. T. K. Tan and C. S. Boon, "Simulation results using JM11.0KTA1.2 software," ITU-T SG16/Q6 Doc. VCEG-AE018, 2007.
  22. M. Karczewicz, P. Chen, R. Joshi, X. Wang, W.-J. Chien, and R. Panchal, "Video coding technology proposal by Qualcomm", JCTVC-A121, 2010.
  23. K. Won, J. Yang, and B. Jeon, "Motion vector coding with contradiction testing," Opt. Eng., Vol. 50, no. 4, pp. 040502, Apr. 2011. https://doi.org/10.1117/1.3571277
  24. G. Bjontegaard, "Calculation of average PSNR differences between RD-curves," ITU-T SG16/Q6 Doc. VCEG-M13, 2001.