DOI QR코드

DOI QR Code

β-glucan이 바지락의 면역력에 미치는 영향

Effect of β-glucan on immune parameters in the Manila clam Ruditapes philippinarum

  • 남기웅 (군산대학교 해양과학대학 해양생명응용과학부 수산생명의학전공) ;
  • 박경일 (군산대학교 해양과학대학 해양생명응용과학부 수산생명의학전공)
  • Nam, Ki-Woong (Faculty of Applied Marine Biosciences, Kunsan National University) ;
  • Park, Kyung-il (Faculty of Applied Marine Biosciences, Kunsan National University)
  • 투고 : 2015.06.22
  • 심사 : 2015.06.29
  • 발행 : 2015.06.30

초록

${\beta}$-glucan은 면역증강제의 하나로 어류를 비롯한 척추동물의 사료첨가제에 널리 이용되고 있는 다당체이다. 본 연구는 척추동물과는 다른 면역체계를 갖고 있는 바지락의 면역반응에 ${\beta}$-glucan이 미치는 영향을 조사하기 위하여 실시되었다. 이를 위하여 식물플랑크톤이 공급된 해수에 0, 0.1, 1%의 ${\beta}$-glucan을 첨가하고 이 해수에 바지락을 매일 1시간 씩 2주간 노출시켜 먹이 섭식 시 ${\beta}$-glucan이 흡수되도록 하였다. 바지락의 면역력은 혈구의 식세포작용과 혈림프액의 병원성 세균에 대한 정균력을 실험전과 ${\beta}$-glucan을 급이한 2주 후 각 그룹별로 비교하였다. 실험결과 0.1%의 ${\beta}$-glucan에 노출된 바지락의 식세포율은 대조구와 비교하여 뚜렷한 증가가 관찰되지 않았으나 1%의 ${\beta}$-glucan에 노출된 경우 약 30%의 식세포율이 증가하였다. 또한 정균력에 관한 실험에서 ${\beta}$-glucan은 바지락 혈림프액이 Vibrio tapetis, V. parahaemolyticus, V. ordalii 등의 병원성 세균의 증식을 억제케 함이 확인되었다. 바지락의 사망률 역시 ${\beta}$-glucan에 노출된 바지락에서 낮았으며 이러한 경향은 ${\beta}$-glucan의 농도가 높을수록 낮았다. 본 연구를 통하여 바지락은 ${\beta}$-glucan에 의해 면역력이 상승하였으며, 주사방식이 아닌 해수 침지시에도 발생함을 확인하였다.

${\beta}$-Glucan is a polysaccharide that is widely used as an adductive in fish feed to facilitate immune stimulation. This study aimed to investigate the effect of ${\beta}$-glucan on immune responses in the Manila clam Ruditapes philippinarum. For this purpose, three groups of R. philippinarum were exposed to 0%, 0.1%, or 1% ${\beta}$-glucan in sea water for 1 hr/day for 2 weeks using an immersion method. Thereafter, two immune parameters-phagocytic rate and antibacterial activity-were measured. R. philippinarum exposed to 1% ${\beta}$-glucan showed an approximate 30% significant increase in phagocytic rate. In addition, ${\beta}$-glucan significantly limited the growth of the pathogenic bacteria Vibrio tapetis, V. parahaemolyticus, and V. ordalii. Moreover, the mortality rates of ${\beta}$-glucan-treated clams decreased during a 17-day experiment. Our study suggests that treatment with ${\beta}$-glucan significantly increases the immune responses in R. philippinarum, and that immersion is a simple and effective method for immune stimulation in this species.

키워드

참고문헌

  1. Ainsworth, A.J. (1994) A ${\beta}$-glucan inhibitable zymosan receptor on channel catfish neutrophils. Veterinary immunology and immunopathology, 41: 141-152. https://doi.org/10.1016/0165-2427(94)90063-9
  2. Allam, B. and Raftos, D. (in press). Immune responses to infectious diseases in bivalves. Journal of Invertebrate Pathology.
  3. Aderem, A. and Ulevitch, R.J. (2000) Toll-like receptors in the induction of the innate immune response. Nature, 406: 782-787. https://doi.org/10.1038/35021228
  4. Brogden, G., Krimmling, T., Adame, K.M., Naim, H.Y., Steinhagen, D. and von Kockritz-Blickwede, M. (2014) The effect of b-glucan on formation and functionality of neutrophil extracellular traps in carp (Cyprinus carpio L.). Developmental and Comparative Immunology, 44: 280-285. https://doi.org/10.1016/j.dci.2014.01.003
  5. Costa, M.M., Novoa, B. and Figueras, A. (2008) Influence of ${\beta}$-glucans on the immune responses of carpet shell clam (Ruditapes decussatus) and Mediterranean mussel (Mytilus galloprovincialis). Fish & Shellfish Immunology, 24(5): 498-505. https://doi.org/10.1016/j.fsi.2007.10.003
  6. Diao, J., Ye, H.B., Yu, X.Q., Xu, Y.F., La,. Li, T.B. and Wang Y.Q. (2013) Adjuvant and immunostimulatory effects of LPS and ${\beta}$-glucan on immune response in Japanese flounder, Paralichthys olivaceus. Veterinary Immunology and Immunopathology, 156: 167-175. https://doi.org/10.1016/j.vetimm.2013.10.004
  7. Ghaedi, G., Keyvanshokooh, S., Azarm, H.M. and Akhlaghi, M. (2015) Effects of dietary ${\beta}$-glucan on maternal immunity and fry quality of rainbow trout (Oncorhynchus mykiss). Aquaculture, 441: 78-83. https://doi.org/10.1016/j.aquaculture.2015.02.023
  8. Hetland, G., Johnson, E., Eide, D.M., Grinde, B., Samuelsen, A.B.C. and Wiker, H. G. (2013) Antimicrobial effects of ${\beta}$-glucans and pectin and of the Agaricus blazei based mushroom extract, AndoSanTM. Examples of mouse models for pneumococcal-, fecal bacterial-, and mycobacterial infections. In: Microbial pathogens and strategies for combating them: science, technology and education Vol 2. (ed. by Mendez-Vilas, A.). pp. 889-898. Formatex, Badajoz Spain.
  9. Lopez-Joven, C., de Blas, I., Ruiz-Zarzuela, I., Furones, M.D. and Roque, A. (2011) Experimental uptake and retention of pathogenic and nonpathogenic Vibrio parahaemolyticus in two species of clams: Ruditapes decussatus and Ruditapes philippinarum. Journal of Applied Microbiology, 111(1): 197-208. https://doi.org/10.1111/j.1365-2672.2011.05024.x
  10. Medzhitov, R. and Janeway, Jr. C.A. (1997) Innate immunity: the virtues of a nonclonal system of recognition. Cell, 91: 295-298. https://doi.org/10.1016/S0092-8674(00)80412-2
  11. Mueller, A., Raptis, J., Rice, P.J., Kalbfleisch, J.H., Stout, R.D., Ensley, H.E., Browder, W. and Williams, D.L. (2000) The influence of glucan polymer structure and solution conformation on binding to (1-->3)-beta-D-glucan receptors in a human monocyte-like cell line. Glycobiology, 10(4): 339-46. https://doi.org/10.1093/glycob/10.4.339
  12. Park, K.I. (2013) Variation of nitric oxide concentrations in response to shaking stress in the Manila clam Ruditapes philippinarum. Korean Journal of Malacology, 29: 1-6. https://doi.org/10.9710/kjm.2013.29.1.1
  13. Park, K.-I., Paillard, C., Chevalier, P. and Choi, K.-S. (2006) Report on the occurrence of brown ring disease (BRD) in Manila clam, Ruditapes philippinarum, on the west coast of Korea. Aquaculture, 255: 610-613. https://doi.org/10.1016/j.aquaculture.2005.12.011
  14. Park, S.O. and Kim, J. (2012) Functional food for immune regulation - beta-glucan. Food Science and Industry, 45: 39-47.
  15. Pipe, R.K. (1992) Generation of reactive oxygen metabolites by the haemocytes of the mussel Mytilus edulis. Developmental and Comparative Immunology, 16: 111-122. https://doi.org/10.1016/0145-305X(92)90012-2
  16. Ruiz, P., Poblete, M., Yanez, A.J., Irgang, R., Toranzo, A.E. and Avendano-Herrera, R. (2015) Cell-surface properties of Vibrio ordalii strains isolated from Atlantic salmon Salmo salar in Chilean farms. Diseases of Aquatic Organisms, 113: 9-23. https://doi.org/10.3354/dao02820
  17. Sirimanapong, W., Adams, A., Ooi E.L., Green, M.D., Nguyen, D.K., Browdy, L,C., Collet, B. and Kim, D.T. (2015) The effects of feeding immunostimulant ${\beta}$-glucan on the immune response of Pangasianodon hypophthalmus. Fish & Shellfish Immunology, 45: 357-366. https://doi.org/10.1016/j.fsi.2015.04.025
  18. Torreilles, J, Guerin, M.C. and Roch, P. (1997) Peroxidase-release associated with phagocytosis in Mytilus galloprovincialis haemocytes. Developmental and Comparative Immunology, 21: 267-275. https://doi.org/10.1016/S0145-305X(96)00034-1
  19. Tzianabos, A.O. (2000) Polysaccharide immunomodulators as therapeutic agents:structural aspects and biologic function. Clinical Microbiology Reviews, 13: 523-533. https://doi.org/10.1128/CMR.13.4.523-533.2000
  20. Wongsasak, U., Chaijamrus, S., Kumkhong, S. and Boonanuntanasarn, S. (2015) Effects of dietary supplementation with ${\beta}$-glucan and synbiotics on immune gene expression and immune parameters under ammonia stress in Pacific white shrimp. Aquaculture, 436: 179-187. https://doi.org/10.1016/j.aquaculture.2014.10.028
  21. Zhao, Y., Ma, H., Zhang, W., Ai, Q., Mai, K., Xu, Wang, X. and Liufu, Z. (2011) Effects of dietary ${\beta}$-glucan on the growth, immune responses and resistance of sea cucumber, Apostichopus japonicus against Vibrio splendidus infection. Aquaculture, 315(3): 269-274. https://doi.org/10.1016/j.aquaculture.2011.02.032

피인용 문헌

  1. ) on the modulation of non-specific immune parameters and survival rates of cultured abalone Nordotis discus hannai vol.32, pp.2, 2016, https://doi.org/10.9710/kjm.2016.32.2.119