DOI QR코드

DOI QR Code

The protective effects of trace elements against side effects induced by ionizing radiation

  • Hosseinimehr, Seyed Jalal (Department of Radiopharmacy, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences)
  • Received : 2015.05.08
  • Accepted : 2015.06.22
  • Published : 2015.06.30

Abstract

Trace elements play crucial role in the maintenance of genome stability in the cells. Many endogenous defense enzymes are containing trace elements such as superoxide dismutase and metalloproteins. These enzymes are contributing in the detoxification of reactive oxidative species (ROS) induced by ionizing radiation in the cells. Zinc, copper, manganese, and selenium are main trace elements that have protective roles against radiation-induced DNA damages. Trace elements in the free salt forms have protective effect against cell toxicity induced by oxidative stress, metal-complex are more active in the attenuation of ROS particularly through superoxide dismutase mimetic activity. Manganese-complexes in protection of normal cell against radiation without any protective effect on cancer cells are more interesting compounds in this topic. The aim of this paper to review the role of trace elements in protection cells against genotoxicity and side effects induced by ionizing radiation.

Keywords

References

  1. Hosseinimehr SJ. Flavonoids and genomic instability induced by ionizing radiation. Drug Discov Today 2010;15:907-18. https://doi.org/10.1016/j.drudis.2010.09.005
  2. Kang DH, Kang SW. Targeting cellular antioxidant enzymes for treating atherosclerotic vascular disease. Biomol Ther (Seoul) 2013;21:89-96. https://doi.org/10.4062/biomolther.2013.015
  3. Limon-Pacheco J, Gonsebatt ME. The role of antioxidants and antioxidant-related enzymes in protective responses to environmentally induced oxidative stress. Mutat Res 2009; 674:137-47. https://doi.org/10.1016/j.mrgentox.2008.09.015
  4. Frassinetti S, Bronzetti G, Caltavuturo L, Cini M, Croce CD. The role of zinc in life: a review. J Environ Pathol Toxicol Oncol 2006;25:597-610. https://doi.org/10.1615/JEnvironPatholToxicolOncol.v25.i3.40
  5. Ho E. Zinc deficiency, DNA damage and cancer risk. J Nutr Biochem 2004;15:572-8. https://doi.org/10.1016/j.jnutbio.2004.07.005
  6. Klotz LO, Kroncke KD, Buchczyk DP, Sies H. Role of copper, zinc, selenium and tellurium in the cellular defense against oxidative and nitrosative stress. J Nutr 2003;133(5 Suppl 1):1448S-51S. https://doi.org/10.1093/jn/133.5.1448S
  7. Schroeder HA, Nason AP. Trace-element analysis in clinical chemistry. Clin Chem 1971;17:461-74.
  8. He ZL, Yang XE, Stoffella PJ. Trace elements in agroecosystems and impacts on the environment. J Trace Elem Med Biol 2005;19:125-40. https://doi.org/10.1016/j.jtemb.2005.02.010
  9. Weinstein A. Low plasma zinc levels in active rheumatoid arthritis. J Rheumatol 1998;25:187-8.
  10. Stone J, Doube A, Dudson D, Wallace J. Inadequate calcium, folic acid, vitamin E, zinc, and selenium intake in rheumatoid arthritis patients: results of a dietary survey. Semin Arthritis Rheum 1997;27:180-5. https://doi.org/10.1016/S0049-0172(97)80018-2
  11. Tong WM, Wang F. Alterations in rat pancreatic islet beta cells induced by Keshan disease pathogenic factors: protective action of selenium and vitamin E. Metabolism 1998;47:415-9. https://doi.org/10.1016/S0026-0495(98)90052-X
  12. Loscalzo J. Keshan disease, selenium deficiency, and the selenoproteome. N Engl J Med 2014;370:1756-60. https://doi.org/10.1056/NEJMcibr1402199
  13. Zhang Y, Gladyshev VN. Comparative genomics of trace element dependence in biology. J Biol Chem 2011;286:23623-9. https://doi.org/10.1074/jbc.R110.172833
  14. Barandier C, Tanguy S, Pucheu S, Boucher F, De Leiris J. Effect of antioxidant trace elements on the response of cardiac tissue to oxidative stress. Ann N Y Acad Sci 1999;874:138-55. https://doi.org/10.1111/j.1749-6632.1999.tb09232.x
  15. Sharif R, Thomas P, Zalewski P, Fenech M. The role of zinc in genomic stability. Mutat Res 2012;733:111-21. https://doi.org/10.1016/j.mrfmmm.2011.08.009
  16. Kim YC, Hummer G. Proton-pumping mechanism of cytochrome c oxidase: a kinetic master-equation approach. Biochim Biophys Acta 2012;1817:526-36. https://doi.org/10.1016/j.bbabio.2011.09.004
  17. Tapiero H, Townsend DM, Tew KD. Trace elements in human physiology and pathology: copper. Biomed Pharmacother 2003;57:386-98. https://doi.org/10.1016/S0753-3322(03)00012-X
  18. McCord JM, Fridovich I. Superoxide dismutase: the first twenty years (1968-1988). Free Radic Biol Med 1988;5:363-9. https://doi.org/10.1016/0891-5849(88)90109-8
  19. Chelikani P, Fita I, Loewen PC. Diversity of structures and properties among catalases. Cell Mol Life Sci 2004;61:192-208. https://doi.org/10.1007/s00018-003-3206-5
  20. Powell SR. The antioxidant properties of zinc. J Nutr 2000; 130(5S Suppl):1447S-54S. https://doi.org/10.1093/jn/130.5.1447S
  21. Brigelius-Flohe R, Maiorino M. Glutathione peroxidases. Biochim Biophys Acta 2013;1830:3289-303. https://doi.org/10.1016/j.bbagen.2012.11.020
  22. Holmgren A. Antioxidant function of thioredoxin and glutaredoxin systems. Antioxid Redox Signal 2000;2:811-20. https://doi.org/10.1089/ars.2000.2.4-811
  23. Babula P, Masarik M, Adam V, et al. Mammalian metallothioneins: properties and functions. Metallomics 2012;4:739-50. https://doi.org/10.1039/c2mt20081c
  24. Viarengo A, Burlando B, Ceratto N, Panfoli I. Antioxidant role of metallothioneins: a comparative overview. Cell Mol Biol (Noisy-le-grand) 2000;46:407-17.
  25. Prasad AS. Clinical, immunological, anti-inflammatory and antioxidant roles of zinc. Exp Gerontol 2008;43:370-7. https://doi.org/10.1016/j.exger.2007.10.013
  26. Prasad AS. Discovery of human zinc deficiency: its impact on human health and disease. Adv Nutr 2013;4:176-90. https://doi.org/10.3945/an.112.003210
  27. Song Y, Leonard SW, Traber MG, Ho E. Zinc deficiency affects DNA damage, oxidative stress, antioxidant defenses, and DNA repair in rats. J Nutr 2009;139:1626-31. https://doi.org/10.3945/jn.109.106369
  28. Sharif R, Thomas P, Zalewski P, Fenech M. Zinc deficiency or excess within the physiological range increases genome instability and cytotoxicity, respectively, in human oral keratinocyte cells. Genes Nutr 2012;7:139-54. https://doi.org/10.1007/s12263-011-0248-4
  29. Taylor RM, Whitehouse CJ, Caldecott KW. The DNA ligase III zinc finger stimulates binding to DNA secondary structure and promotes end joining. Nucleic Acids Res 2000;28:3558-63. https://doi.org/10.1093/nar/28.18.3558
  30. Jung HJ, Kim HL, Kim YJ, Weon JI, Seo YR. A novel chemopreventive mechanism of selenomethionine: enhancement of APE1 enzyme activity via a Gadd45a, PCNA and APE1 protein complex that regulates p53-mediated base excision repair. Oncol Rep 2013;30:1581-6. https://doi.org/10.3892/or.2013.2613
  31. Bera S, De Rosa V, Rachidi W, Diamond AM. Does a role for selenium in DNA damage repair explain apparent controversies in its use in chemoprevention? Mutagenesis 2013;28:127-34. https://doi.org/10.1093/mutage/ges064
  32. Karunasinghe N, Ryan J, Tuckey J, et al. DNA stability and serum selenium levels in a high-risk group for prostate cancer. Cancer Epidemiol Biomarkers Prev 2004;13:391-7.
  33. Yamamori T, Yasui H, Yamazumi M, et al. Ionizing radiation induces mitochondrial reactive oxygen species production accompanied by upregulation of mitochondrial electron transport chain function and mitochondrial content under control of the cell cycle checkpoint. Free Radic Biol Med 2012; 53:260-70. https://doi.org/10.1016/j.freeradbiomed.2012.04.033
  34. Sedelnikova OA, Redon CE, Dickey JS, Nakamura AJ, Georgakilas AG, Bonner WM. Role of oxidatively induced DNA lesions in human pathogenesis. Mutat Res 2010;704:152-9. https://doi.org/10.1016/j.mrrev.2009.12.005
  35. Kim GJ, Chandrasekaran K, Morgan WF. Mitochondrial dysfunction, persistently elevated levels of reactive oxygen species and radiation-induced genomic instability: a review. Mutagenesis 2006;21:361-7. https://doi.org/10.1093/mutage/gel048
  36. Shikazono N, Noguchi M, Fujii K, Urushibara A, Yokoya A. The yield, processing, and biological consequences of clustered DNA damage induced by ionizing radiation. J Radiat Res 2009;50:27-36. https://doi.org/10.1269/jrr.08086
  37. Lomax ME, Folkes LK, O'Neill P. Biological consequences of radiation-induced DNA damage: relevance to radiotherapy. Clin Oncol (R Coll Radiol) 2013;25:578-85. https://doi.org/10.1016/j.clon.2013.06.007
  38. Iyama T, Wilson DM 3rd. DNA repair mechanisms in dividing and non-dividing cells. DNA Repair (Amst) 2013;12:620-36. https://doi.org/10.1016/j.dnarep.2013.04.015
  39. Hosseinimehr SJ. Trends in the development of radioprotective agents. Drug Discov Today 2007;12:794-805. https://doi.org/10.1016/j.drudis.2007.07.017
  40. Schaue D, Kachikwu EL, McBride WH. Cytokines in radiobiological responses: a review. Radiat Res 2012;178:505-23. https://doi.org/10.1667/RR3031.1
  41. Bubici C, Papa S, Dean K, Franzoso G. Mutual cross-talk between reactive oxygen species and nuclear factor-kappa B: molecular basis and biological significance. Oncogene 2006;25:6731-48. https://doi.org/10.1038/sj.onc.1209936
  42. Schaller G, Pleiner J, Mittermayer F, Posch M, Kapiotis S, Wolzt M. Effects of N-acetylcysteine against systemic and renal hemodynamic effects of endotoxin in healthy humans. Crit Care Med 2007;35:1869-75. https://doi.org/10.1097/01.CCM.0000275385.45557.25
  43. Mantovani G, Maccio A, Madeddu C, et al. Reactive oxygen species, antioxidant mechanisms, and serum cytokine levels in cancer patients: impact of an antioxidant treatment. J Environ Pathol Toxicol Oncol 2003;22:17-28. https://doi.org/10.1615/JEnvPathToxOncol.v22.i1.20
  44. Yan B, Wang H, Rabbani ZN, et al. Tumor necrosis factoralpha is a potent endogenous mutagen that promotes cellular transformation. Cancer Res 2006;66:11565-70. https://doi.org/10.1158/0008-5472.CAN-06-2540
  45. Ozyurt H, Cevik O, Ozgen Z, et al. Quercetin protects radiationinduced DNA damage and apoptosis in kidney and bladder tissues of rats. Free Radic Res 2014;48:1247-55. https://doi.org/10.3109/10715762.2014.945925
  46. Ostrau C, Hulsenbeck J, Herzog M, et al. Lovastatin attenuates ionizing radiation-induced normal tissue damage in vivo. Radiother Oncol 2009;92:492-9. https://doi.org/10.1016/j.radonc.2009.06.020
  47. Munshi A, Ramesh R. Mitogen-activated protein kinases and their role in radiation response. Genes Cancer 2013;4:401-8. https://doi.org/10.1177/1947601913485414
  48. Dent P, Yacoub A, Fisher PB, Hagan MP, Grant S. MAPK pathways in radiation responses. Oncogene 2003;22:5885-96. https://doi.org/10.1038/sj.onc.1206701
  49. Cai L, Cherian MG. Adaptive response to ionizing radiationinduced chromosome aberrations in rabbit lymphocytes: effect of pre-exposure to zinc, and copper salts. Mutat Res 1996;369:233-41. https://doi.org/10.1016/S0165-1218(96)90028-2
  50. Matsubara J. Metallothionein induction: a measure of radioprotective action. Health Phys 1988;55:433-6. https://doi.org/10.1097/00004032-198808000-00043
  51. Cai L, Cherian MG. Zinc-metallothionein protects from DNA damage induced by radiation better than glutathione and copper- or cadmium-metallothioneins. Toxicol Lett 2003;136:193-8. https://doi.org/10.1016/S0378-4274(02)00359-4
  52. Krishnamurthy H, Jagetia GC, Jyothi P. Radioprotective effect of zinc aspartate on mouse spermatogenesis: a flow cytometric evaluation. Mutat Res 1998;401:111-20. https://doi.org/10.1016/S0027-5107(97)00320-5
  53. Floersheim GL, Floersheim P. Protection against ionising radiation and synergism with thiols by zinc aspartate. Br J Radiol 1986;59:597-602. https://doi.org/10.1259/0007-1285-59-702-597
  54. Huang MY, Lian SL, Wu HL, et al. Effects of zinc compound on body weight and recovery of bone marrow in mice treated with total body irradiation. Kaohsiung J Med Sci 2007;23:453-62. https://doi.org/10.1016/S1607-551X(08)70053-6
  55. Dhawan D, Singh Baweja M, Dani V. Zinc sulphate following the administration of iodine-131 on the regulation of thyroid function, in rats. Hell J Nucl Med 2007;10:167-71.
  56. Dani V, Dhawan D. Zinc as an antiperoxidative agent following iodine-131 induced changes on the antioxidant system and on the morphology of red blood cells in rats. Hell J Nucl Med 2006;9:22-6.
  57. Dani V, Dhawan DK. Radioprotective role of zinc following single dose radioiodine ($^{131}I$) exposure to red blood cells of rats. Indian J Med Res 2005;122:338-42.
  58. Sliwinski T, Czechowska A, Kolodziejczak M, Jajte J, Wisniewska-Jarosinska M, Blasiak J. Zinc salts differentially modulate DNA damage in normal and cancer cells. Cell Biol Int 2009;33:542-7. https://doi.org/10.1016/j.cellbi.2009.02.004
  59. Witkiewicz-Kucharczyk A, Bal W. Damage of zinc fingers in DNA repair proteins, a novel molecular mechanism in carcinogenesis. Toxicol Lett 2006;162:29-42. https://doi.org/10.1016/j.toxlet.2005.10.018
  60. Romero A, Ramos E, de Los Rios C, Egea J, Del Pino J, Reiter RJ. A review of metal-catalyzed molecular damage: protection by melatonin. J Pineal Res 2014;56:343-70. https://doi.org/10.1111/jpi.12132
  61. Anjos VA, da Silva FM Jr, Souza MM. Cell damage induced by copper: an explant model to study anemone cells. Toxicol In Vitro 2014;28:365-72. https://doi.org/10.1016/j.tiv.2013.11.013
  62. Linder MC. The relationship of copper to DNA damage and damage prevention in humans. Mutat Res 2012;733:83-91. https://doi.org/10.1016/j.mrfmmm.2012.03.010
  63. Buchtik R, Travnicek Z, Vanco J. In vitro cytotoxicity, DNA cleavage and SOD-mimic activity of copper(II) mixed-ligand quinolinonato complexes. J Inorg Biochem 2012;116:163-71. https://doi.org/10.1016/j.jinorgbio.2012.07.009
  64. Liang JW, Wang Y, Du KJ, et al. Synthesis, DNA interaction and anticancer activity of copper(II) complexes with 4'-phenyl-2,2':6',2''-terpyridine derivatives. J Inorg Biochem 2014;141:17-27. https://doi.org/10.1016/j.jinorgbio.2014.08.006
  65. Li Z, Yang X, Dong S, Li X. DNA breakage induced by piceatannol and copper(II): mechanism and anticancer properties. Oncol Lett 2012;3:1087-94. https://doi.org/10.3892/ol.2012.597
  66. Li GY, Du KJ, Wang JQ, et al. Synthesis, crystal structure, DNA interaction and anticancer activity of tridentate copper(II) complexes. J Inorg Biochem 2013;119:43-53. https://doi.org/10.1016/j.jinorgbio.2012.09.019
  67. Brozmanova J, Manikova D, Vlckova V, Chovanec M. Selenium: a double-edged sword for defense and offence in cancer. Arch Toxicol 2010;84:919-38. https://doi.org/10.1007/s00204-010-0595-8
  68. Tabassum A, Bristow RG, Venkateswaran V. Ingestion of selenium and other antioxidants during prostate cancer radiotherapy: a good thing? Cancer Treat Rev 2010;36:230-4. https://doi.org/10.1016/j.ctrv.2009.12.008
  69. Kunwar A, Bansal P, Kumar SJ, et al. In vivo radioprotection studies of 3,3'-diselenodipropionic acid, a selenocystine derivative. Free Radic Biol Med 2010;48:399-410. https://doi.org/10.1016/j.freeradbiomed.2009.11.009
  70. Baliga MS, Diwadkar-Navsariwala V, Koh T, Fayad R, Fantuzzi G, Diamond AM. Selenoprotein deficiency enhances radiation-induced micronuclei formation. Mol Nutr Food Res 2008;52:1300-4. https://doi.org/10.1002/mnfr.200800020
  71. Fischer JL, Lancia JK, Mathur A, Smith ML. Selenium protection from DNA damage involves a Ref1/p53/Brca1 protein complex. Anticancer Res 2006;26(2A):899-904.
  72. Tuji FM, Pontual ML, Barros SP, Almeida SM, Boscolo FN. Ultrastructural assessment of the radioprotective effects of sodium selenite on parotid glands in rats. J Oral Sci 2010;52:369-75. https://doi.org/10.2334/josnusd.52.369
  73. Weiss JF, Srinivasan V, Kumar KS, Landauer MR. Radioprotection by metals: selenium. Adv Space Res 1992;12:223-31.
  74. Weiss JF, Hoover RL, Kumar KS. Selenium pretreatment enhances the radioprotective effect and reduces the lethal toxicity of WR-2721. Free Radic Res Commun 1987;3:33-8. https://doi.org/10.3109/10715768709069767
  75. Rocha AS, Ramos-Perez FM, Boscolo FN, Manzi FR, Cchicarelo M, Almeida SM. Effect of sodium selenite on bone repair in tibiae of irradiated rats. Braz Dent J 2009;20:186-90. https://doi.org/10.1590/S0103-64402009000300002
  76. de Freitas DQ, Ramos-Perez FM, Neves EG, Marques MR, Boscolo FN, de Almeida SM. Radioprotective effect of sodium selenite on bone repair in the tibia of ovariectomized rats. Braz Dent J 2012;23:723-8. https://doi.org/10.1590/S0103-64402012000600017
  77. Schueller P, Puettmann S, Micke O, Senner V, Schaefer U, Willich N. Selenium influences the radiation sensitivity of C6 rat glioma cells. Anticancer Res 2004;24(5A):2913-7.
  78. Murata R, Nishimura Y, Hiraoka M, Abe M, Satoh M. Manganese chloride treatment does not protect against acute radiation injury of skin or crypt cells. Radiat Res 1995;143:316-9. https://doi.org/10.2307/3579219
  79. Gu Q, Feng T, Cao H, et al. HIV-TAT mediated protein transduction of Cu/Zn-superoxide dismutase-1 (SOD1) protects skin cells from ionizing radiation. Radiat Oncol 2013;8:253. https://doi.org/10.1186/1748-717X-8-253
  80. Candas D, Li JJ. MnSOD in oxidative stress response-potential regulation via mitochondrial protein influx. Antioxid Redox Signal 2014;20:1599-617. https://doi.org/10.1089/ars.2013.5305
  81. Emami S, Hosseinimehr SJ, Taghdisi SM, Akhlaghpoor S. Kojic acid and its manganese and zinc complexes as potential radioprotective agents. Bioorg Med Chem Lett 2007;17:45-8. https://doi.org/10.1016/j.bmcl.2006.09.097
  82. Hosseinimehr SJ, Shafiee A, Mozdarani H, Akhlagpour S, Froughizadeh M. Radioprotective effects of 2-imino-3- [(chromone-2-yl)carbonyl] thiazolidines against gammairradiation in mice. J Radiat Res 2002;43:293-300. https://doi.org/10.1269/jrr.43.293
  83. Mantena SK, Unnikrishnan MK, Chandrasekharan K. Radioprotection by copper and zinc complexes of 5-aminosalicylic acid: a preliminary study. J Environ Pathol Toxicol Oncol 2008;27:123-34. https://doi.org/10.1615/JEnvironPatholToxicolOncol.v27.i2.50
  84. Abou-Seif MA, El-Naggar MM, El-Far M, Ramadan M, Salah N. Prevention of biochemical changes in gamma-irradiated rats by some metal complexes. Clin Chem Lab Med 2003;41:926-33.
  85. Gridley DS, Makinde AY, Luo X, et al. Radiation and a metalloporphyrin radioprotectant in a mouse prostate tumor model. Anticancer Res 2007;27(5A):3101-9.
  86. Li BQ, Dong X, Li N, et al. In vitro enzyme-mimic activity and in vivo therapeutic potential of HSJ-0017, a novel Mn porphyrinbased antioxidant enzyme mimic. Exp Biol Med (Maywood) 2014;239:1366-79. https://doi.org/10.1177/1535370214532598
  87. Gauter-Fleckenstein B, Fleckenstein K, Owzar K, Jiang C, Batinic-Haberle I, Vujaskovic Z. Comparison of two Mn porphyrin-based mimics of superoxide dismutase in pulmonary radioprotection. Free Radic Biol Med 2008;44:982-9. https://doi.org/10.1016/j.freeradbiomed.2007.10.058
  88. Srinivasan V, Doctrow S, Singh VK, Whitnall MH. Evaluation of EUK-189, a synthetic superoxide dismutase/catalase mimetic as a radiation countermeasure. Immunopharmacol Immunotoxicol 2008;30:271-90. https://doi.org/10.1080/08923970801925331
  89. Moeller BJ, Batinic-Haberle I, Spasojevic I, et al. A manganese porphyrin superoxide dismutase mimetic enhances tumor radioresponsiveness. Int J Radiat Oncol Biol Phys 2005;63:545-52. https://doi.org/10.1016/j.ijrobp.2005.05.026
  90. Karapetyan NH, Malakyan MH, Bajinyan SA, Torosyan AL, Grigoryan IE, Haroutiunian SG. Influence of amino acids Shiff bases on irradiated DNA stability in vivo. Cell Biochem Biophys 2013;67:1137-45. https://doi.org/10.1007/s12013-013-9617-5
  91. Oberley-Deegan RE, Steffan JJ, Rove KO, et al. The antioxidant, MnTE-2-PyP, prevents side-effects incurred by prostate cancer irradiation. PLoS One 2012;7:e44178. https://doi.org/10.1371/journal.pone.0044178
  92. Mehrotra S, Pecaut MJ, Freeman TL, et al. Analysis of a metalloporphyrin antioxidant mimetic (MnTE-2-PyP) as a radiomitigator: prostate tumor and immune status. Technol Cancer Res Treat 2012;11:447-57. https://doi.org/10.7785/tcrt.2012.500260
  93. Gauter-Fleckenstein B, Fleckenstein K, Owzar K, et al. Early and late administration of MnTE-2-PyP5+ in mitigation and treatment of radiation-induced lung damage. Free Radic Biol Med 2010;48:1034-43. https://doi.org/10.1016/j.freeradbiomed.2010.01.020
  94. Ertekin MV, Koc M, Karslioglu I, Sezen O. Zinc sulfate in the prevention of radiation-induced oropharyngeal mucositis: a prospective, placebo-controlled, randomized study. Int J Radiat Oncol Biol Phys 2004;58:167-74. https://doi.org/10.1016/S0360-3016(03)01562-1
  95. Watanabe T, Ishihara M, Matsuura K, Mizuta K, Itoh Y. Polaprezinc prevents oral mucositis associated with radiochemotherapy in patients with head and neck cancer. Int J Cancer 2010;127:1984-90. https://doi.org/10.1002/ijc.25200
  96. Muecke R, Schomburg L, Glatzel M, et al. Multicenter, phase 3 trial comparing selenium supplementation with observation in gynecologic radiation oncology. Int J Radiat Oncol Biol Phys 2010;78:828-35. https://doi.org/10.1016/j.ijrobp.2009.08.013
  97. Muecke R, Micke O, Schomburg L, et al. Multicenter, phase III trial comparing selenium supplementation with observation in gynecologic radiation oncology: follow-up analysis of the survival data 6 years after cessation of randomization. Integr Cancer Ther 2014;13:463-7. https://doi.org/10.1177/1534735414541963

Cited by

  1. Mechanism of the Antitumor and Radiosensitizing Effects of a Manganese Porphyrin, MnHex-2-PyP vol.27, pp.14, 2015, https://doi.org/10.1089/ars.2016.6889
  2. Effects of Fresh, Ensiled and Dried Alfalfa on Free Radical Damage and Some Antioxidants in the Blood of Lambs vol.3, pp.2, 2015, https://doi.org/10.29132/ijpas.320171
  3. miR-17-3p Downregulates Mitochondrial Antioxidant Enzymes and Enhances the Radiosensitivity of Prostate Cancer Cells vol.13, pp.None, 2018, https://doi.org/10.1016/j.omtn.2018.08.009
  4. The crosstalk between trace elements with DNA damage response, repair, and oxidative stress in cancer vol.120, pp.2, 2015, https://doi.org/10.1002/jcb.27617
  5. Protection from ionizing radiation-induced genotoxicity and apoptosis in rat bone marrow cells by HESA-A: a new herbal-marine compound vol.51, pp.5, 2015, https://doi.org/10.1007/s10863-019-09808-5
  6. Evaluating the protective effect of resveratrol, Q10, and alpha-lipoic acid on radiation-induced mice spermatogenesis injury: A histopathological study vol.17, pp.12, 2019, https://doi.org/10.18502/ijrm.v17i12.5791
  7. Effects of Early Life Adverse Experience on Contents of Essential Trace Elements Related to the Antioxidative System in the Adult Mouse Hippocampus vol.11, pp.2, 2015, https://doi.org/10.4236/psych.2020.112020
  8. Effect of Low-Level Laser on Some Metals Related to Redox State and Histological Alterations in the Liver and Kidney of Irradiated Rats vol.194, pp.2, 2015, https://doi.org/10.1007/s12011-019-01779-3
  9. Radioprotective effects of montelukast, a selective leukotriene CysLT1 receptor antagonist, against nephrotoxicity induced by gamma radiation in mice vol.34, pp.6, 2015, https://doi.org/10.1002/jbt.22479
  10. Organically grown outdoor tomato: fruit mineral nutrients and plant infection by Phytophthora infestans vol.10, pp.2, 2015, https://doi.org/10.1007/s13165-019-00253-7
  11. Radioprotection and Radiomitigation: From the Bench to Clinical Practice vol.8, pp.11, 2015, https://doi.org/10.3390/biomedicines8110461
  12. Gene Signatures Induced by Ionizing Radiation as Prognostic Tools in an In Vitro Experimental Breast Cancer Model vol.13, pp.18, 2015, https://doi.org/10.3390/cancers13184571