DOI QR코드

DOI QR Code

Study for Biodegradability of Cellulose Derived from Styela clava tunics

미더덕껍질 셀룰로오스의 매립 생분해성에 대한 연구

  • Seong, Keum-Yong (Department of Biomaterials Science/Life and Industry Convergence Research Institute, Pusan National University) ;
  • Lee, Seunghyun (Department of Biomaterials Science/Life and Industry Convergence Research Institute, Pusan National University) ;
  • Yim, Sang-Gu (Department of Biomaterials Science/Life and Industry Convergence Research Institute, Pusan National University) ;
  • Son, Hong Joo (Department of Life Science and Environment Biochemistry, College of Natural Resources and Life Science, Pusan National University) ;
  • Lee, Young-Hee (Department of Organic Material Science and Engineering, College of Engineering, Pusan National University) ;
  • Hwang, Dae Youn (Department of Biomaterials Science/Life and Industry Convergence Research Institute, Pusan National University) ;
  • Jung, Young Jin (Department of Biomaterials Science/Life and Industry Convergence Research Institute, Pusan National University)
  • 성금용 (부산대학교 바이오소재과학과/생명융합연구원) ;
  • 이승현 (부산대학교 바이오소재과학과/생명융합연구원) ;
  • 임상구 (부산대학교 바이오소재과학과/생명융합연구원) ;
  • 손홍주 (부산대학교 생명환경화학과) ;
  • 이영희 (부산대학교 유기소재시스템공학과) ;
  • 황대연 (부산대학교 바이오소재과학과/생명융합연구원) ;
  • 정영진 (부산대학교 바이오소재과학과/생명융합연구원)
  • Received : 2015.01.02
  • Accepted : 2015.05.20
  • Published : 2015.06.27

Abstract

To investigate the biodegradation of the cellulose powder(CP) derived from Styela clava tunics(SCT), some physico-chemical properties and biodegradability of SCT-CP were measured after the incubation for 45 days. The particles size of SCT-CP prepared with washing, bleaching, drying, and grinding processes was $150-400{\mu}m$ although most of particles (70%) was more than $400{\mu}m$. The cellulose structures of SCT-CP detected using the X-ray diffraction and DSC analysis was very similar with that of wood pulp powder(WP-CP). The glass transition temperature was not detected in both samples. Furthermore, more than 90% of the SCT-CP was degraded, whereas only over 70% of the WP-CP was degraded after the incubation for 45 days. Therefore, these results suggest the possibility that SCT-CP is particularly applicable to prepare medical fiber and film for disease treatment.

Keywords

References

  1. D. R. Houghton and R. H. Millar, Spread of Styela mammiculata Carlisle, Nature, 185, 862(1960).
  2. E. S. Jung, J. Y. Kim, E. J. Park, H. R. Park, and S. C. Lee, Cytotoxic Effect of Extracts from Styela clava against Human Cancer Cell Lines, J. Korean Soc. Food Sci. Nytr., 35(7), 306(2006).
  3. K. A. Hillock and H. J. Costello, Tolerance of the Invasive Tunicate Styela clava to Air Exposure, Biofouling, 29(10), 1181(2013). https://doi.org/10.1080/08927014.2013.832221
  4. M. J. Wonham and J. T. Carlton, Trends in Marine Biological Invasions at Local and Regional Scales: the Northeast Pacific Ocean as a Model System, Biol. Invasions., 7, 369(2005). https://doi.org/10.1007/s10530-004-2581-7
  5. M. H. Davis and M. E. Davis, Styela clava (Tunicata: Ascidiacea) - a New Addition to the Fauna of the Portuguese Coast, J. Mar. Biol. Assoc. UK, 85(2), 403(2005). https://doi.org/10.1017/S002531540501132Xh
  6. B. Y. Seo, E. S. Jung, J. Y. Kim, H. R. Park, S. C. Lee, and E. J. Park, Effect of Aceton Extract from Styela clava on Oxidative DNA Damage and Anticancer Activity, J. Korean Soc. Appl. Biol. Chem., 49(3), 227(2006).
  7. Y. J. Jung, Properties of Regenerated Cellulose Films Prepared from the Tunicate Styela clava, J. Kor. Fish. Soc., 41(4), 237(2008).
  8. S. H. Ahn, S. H. Jung, S. J. Kang, T. S. Jeong, and B. D. Choi, Extraction of Glycosaminoglycans from Styela clava Tunic, Korean J. Biotechnol. Bioeng., 18(3), 180(2003).
  9. S. Shiqeta, O. Suzuki, Y. Aki, S. Kawamoto, and K. Ono, Purification and Characterization of Sea Squirt Alpha-N-acetylgalactosaminidase, J. Biosci. Bioeng., 89(1), 84(2000). https://doi.org/10.1016/S1389-1723(00)88056-1
  10. A. Bodin, L. Gustafsson, and P. Gatenholm, Surface-engineered Bacterial Cellulose as Template for Crystallization of Calcium Phosphate, J. Biomater. Sci. Polym. Ed., 17(4), 435(2006). https://doi.org/10.1163/156856206776374106
  11. S. M. Kim, J. H. Lee, J. A. Jo, S. C. Lee, and S. K. Lee, Preparation and Properties of Regenerated Cellulosic Biomaterial made from Styela clava tunics, J. Kor. Oral Maxillofac. Surg., 31, 440(2005).
  12. Y. J. Jung, B. J. An, H. S. Kim, H. W. Choi, E. P. Lee, J. H. Lee, H. D. Kim, S. M. Park, and S. D. Kim, Preparation and Properties of Regenerated Composite Fibers made from Styela clava Tunics/PVA Blending(2), Textile Coloration and Finishing, 20(3), 31(2008). https://doi.org/10.5764/TCF.2008.20.3.031
  13. S. H. Song, J. E. Kim, Y. J. Lee, M. H. Kwak, G. Y. Sung, S. H. Kwon, H. J. Son, H. S. Lee, Y. J. Jung, and D. Y. Hwang, Cellulose Film Regenerated from Styela clava Tunics have Biodegradability, Toxicity and Biocompatibility in the Skin of SD Rats, J. Mater Sci. Mater Med., 25(6), 1519(2014). https://doi.org/10.1007/s10856-014-5182-8
  14. S. C. Fadi and J. R. Arthur, Review of Current and Future Softwood Kraft Lignin Process Chemistry, Ind. Crops Prod., 20(2), 131(2004). https://doi.org/10.1016/j.indcrop.2004.04.016
  15. K. C. Ellis and J. O. Warwicher, A Study of the Crystal Structure of Cellulose I, J. Polym. Sci., 56(164), 339(1962). https://doi.org/10.1002/pol.1962.1205616405
  16. F. J. Kolpak and J. Blackwell, Determination of the Structure of Cellulose II, Macromolecules, 9(2), 273(1976). https://doi.org/10.1021/ma60050a019
  17. M. Wada, H. Chanzy, Y. Nishiyama, and P. Langan, Cellulose III Crystal Structure and Hydrogen Bonding by Synchrotron X-ray and Neutron Fiber Diffraction, Macromolecules, 37(23), 8548(2004). https://doi.org/10.1021/ma0485585
  18. L. He, Z. Guoying, and Z. Huaiyun, Research and Utilizaton Status of Natural Bamboo Fiber, Adv. Mat. Res., 159, 216(2010). https://doi.org/10.4028/www.scientific.net/AMR.159.216
  19. Y. Kataoka and T. Kondo, Quantitative Analysis for the Cellulose I Alpha Crystalline Phase in Developing Wood Cell Walls, Int. J. Biol. Macromol., 24(1), 37(1999). https://doi.org/10.1016/S0141-8130(98)00065-8
  20. L. Segal, J. J. Creely, A. E. Martin, and C. M. Conrad, An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose using the X-ray Diffractometer, Text. Res. J., 29(10), 786(1959). https://doi.org/10.1177/004051755902901003
  21. L. Szcxesniak, A. Rachochi, and J. Tritt-Goe, Glass Transition Temperature and Thermal Decomposition of Cellulose Powder, Cellulose, 15, 445(2008). https://doi.org/10.1007/s10570-007-9192-2
  22. A. J. Stamm, Thermal Degradation of Wood and Cellulose, Ind. Eng. Chem., 48(3), 413(1956). https://doi.org/10.1021/ie51398a022
  23. Y. H. Lee, E. J. Lee, G. S. Chang, D. J. Lee, Y. J. Jung, and H. D. Kim, Comparison of Oil Sorption Capacity and Biodegradability of PP, PP/kapok(10/90wt%) Blend and Commercial(T2COM) Oil Sorbent Pads, Textile Coloration and Finishing, 26(3), 151(2014). https://doi.org/10.5764/TCF.2014.26.3.151

Cited by

  1. Characterization of Styela clava Tunic after Alkaline Treatment vol.45, pp.5, 2016, https://doi.org/10.3746/jkfn.2016.45.5.690