Abstract
Prefabricated houses are fabricated at the factory for approximately 60 to 80% of the entire construction process, and assembled in the field. In the process of transporting and lifting, internal and external finishes of the unit module are concerned about damages. The purpose of this study is to improve the fixing equipment by analyzing load behavior. The improved fixing equipment would minimize the deformation of internal and external finishes. In order to develop the improved fixing equipment, transporting load on the fixing equipment is analyzed using Monte Carlo simulations, and structural performance is verified by the non-linear finite element analysis. Statistical analysis shows load distribution of unit module is similar with extreme value distribution. Based on the statistical analysis and Monte Carlo simulation, the maximum transporting load is 28.9kN and 95% confidence interval of transporting load is -1.22kN to 9.5kN. The nonlinear structural analysis shows improved fixing equipment is not destructed to the limit load of 35.3kN and withstands the load-bearing in the 95% confidence interval of transporting load.
조립식 주택은 기존 RC공법과 달리 사전에 전체공사의 약 60-80%를 유닛모듈 형태로 공장 제작하고, 차량을 이용하여 현장까지 운반 후 각 모듈을 결속하여 시공한다. 조립식 주택은 공장제작을 통한 급속시공이 가능한 장점이 있지만, 모듈을 현장까지 운반하는 과정에서 모듈 탈락의 우려가 있으며, 이로 인한 모듈의 변형 및 외장재의 파손이 발생할 수 있다. 본 연구는 기존의 모듈운반 고정장치의 문제점을 분석하고 개선된 고정장치를 제안하였다. 고정장치 개선안을 도출하기 위해 고정장치에 가해지는 운반하중을 몬테카를로 시뮬레이션을 이용하여 분석하고, 비선형 유한요소 해석을 통한 구조적 성능을 검증하였다. 유닛모듈의 하중분포는 통계분석을 통해 3개 유사하중 그룹으로 구분되며, 극단값 분포(Extreme Value Distribution)와 가장 유사한 하중분포를 가진 것으로 분석되었다. 통계분석 및 몬테카를로 시뮬레이션을 통해, 운반하중의 최대값(28.9kN) 및 95% 신뢰도 범위 내 하중값(-1.22~9.5kN)을 계산하였다. 비선형 구조해석 결과는 본 연구에서 제시한 고정장치 개선안이 한계하중 35.3kN까지 파괴가 일어나지 않았으며, 95% 신뢰도 범위 내 하중에서도 충분히 견뎌내는 강성을 지니고 있음을 보여주고 있다.