Abstract
Although sheath-type heating line is generally used for susceptor heater, performance deterioration problems in temperature uniformity occurs in the case of large scale and high temperature condition. We developed new design and prototype of the susceptor using sheet metal to provide performance improvement in temperature uniformity. Temperature uniformity below 1.4% in the surface temperature condition of $450^{\circ}C$ was verified in the susceptor prototype. Also we developed Kernel regression algorithm to estimate measured temperature using temperature learning data. The reliability of the measured temperature uniformity was confirmed by comparative analysis between predicted data and measured data.
서셉터 히터에서 쉬스 열선을 사용하는 방법이 일반화되어 있지만, 대면적 초고온 조건에서는 서셉터의 온도 균일도 성능 저하의 문제가 있다. 본 연구에서는 온도균일도 성능을 향상시킬 수 있도록 판형 형태의 열선을 기본으로 새로운 서셉터를 설계하여 프로토타입을 개발하였다. 표면 온도 $450^{\circ}C$의 고온에서 1.4% 이내로 온도 균일도가 시제작된 서셉터에서 검증될 수 있었다. 또한 온도 학습 데이터를 이용하여 측정 온도 데이터를 예측할 수 있는 커널 회귀 알고리즘을 개발하고, 이러한 예측 데이터와 측정 데이터의 비교 분석으로 균일도 측정 온도의 신뢰성을 확인할 수 있었다.