DOI QR코드

DOI QR Code

Design and Implementation of Automatic Dependent Surveillance - Broadcast Server System

ADS-B 서버 시스템의 설계 및 구현

  • Cho, Taehwan (Department of Electronics Engineering, Republic of Korea Air Force Academy) ;
  • Kim, Kanghee (Department of Electronics Engineering, Inha University) ;
  • Kim, Jinhyuk (Department of Electronics Engineering, Inha University) ;
  • Choi, Sangbang (Department of Electronics Engineering, Inha University)
  • Received : 2015.05.11
  • Accepted : 2015.06.17
  • Published : 2015.06.30

Abstract

The automatic dependent surveillance - broadcast (ADS-B) system which is a core system of aviation system block upgrade is designed and implemented. The ADS-B system consists of the 4 blocks and 10 units, and filtering algorithm is applied to the implemented ADS-B system. To evaluate a performance of the implemented ADS-B system, real aircraft position data is used and compared reliable radar data. The comparison results show that average position difference of 99.57 m. In addition, comparisons of aircraft position data between the implemented ADS-B system employing filtering algorithm and the conventional ADS-B system under various situations are carried out, such as aircraft turning, taking off, landing, and cruising. The comparison results show that average position difference of 8.02 m.

ASBU (aviation system block upgrade)의 핵심 시스템 중 하나인 ADS-B (automatic dependent surveillance - broadcast) 시스템을 설계하고 구현하였다. ADS-B 시스템은 4개의 블록과 10개의 유닛으로 구성되어 있으며, 구현된 ADS-B 시스템에 필터링 알고리즘을 적용하였다. 구현된 ADS-B 시스템의 성능평가를 위해 실제 항공기 데이터를 이용하였으며, 신뢰도가 확보된 레이더 데이터와 비교하였다. 또한 필터링 알고리즘을 적용한 ADS-B 데이터와 기존의 ADS-B 데이터를 항공기 선회, 이륙, 착륙, 순항 등 다양한 상황에서 비교하였다. 성능평가 결과, 구현된 ADS-B 데이터와 레이더 데이터 간의 항공기 위치 차이는 99.57 m이고, 필터링 알고리즘을 적용한 ADS-B 데이터와 기존의 ADS-B 데이터 간의 항공기 위치 차이는 평균 8.02 m로 나타났다.

Keywords

References

  1. Ministry of land transport and maritime R&D report, ADS-B core technology development R&D report for air surveillance, 2010.
  2. Federal aviation administration, FITS generic ADS-B, TIS-B and FIS-B syllabus version 1.0, 2009.
  3. Selex, ADS-B 1090ES ground station system description (ADS-B in/out), 2011.
  4. Eurocontrol, CAT021, ADS-B messages, 2003.
  5. T. Otsuyama, M. Shioji, and S. Ozeki, "Development and feasibility flight test of TIS-B system for situational awareness enhancement," IEICE Transactions on Communications, Vol. E94B, No. 11, pp. 2991-2993, 2011.
  6. Flight information services-broadcast product registry website, http://fpr.tc.faa.gov.
  7. Korea aviation meteorological agency, Aviation meteorological work instructions, 2010.
  8. T. H. Cho, I. S. Song, E. M. Jang, W.O. Yoon, and S. B. Choi, "A Study on FIS-B design and implementation for providing air traffic informations," The Journal of Korea Navigation Institute, Vol. 15, No. 6, pp. 970-976, 2011.
  9. T. H. Cho, J. H. Kim, and S. B. Choi, "Robust filtering algorithm for improvement of air navigation system," The Journal of Korea Navigation Institute, Vol. 19, No. 2, pp. 123-132, 2015. https://doi.org/10.12673/jant.2015.19.2.123
  10. T. L. Song, "Filtering theory," Journal of Institute of Control, Robotics and Systems, Vol. 9, No. 2, pp. 413-419, 2003.
  11. H. A. P. Blom, and Y. Bar-Shalom, "The interacting multiple model algorithm for systems with markovian switching coefficients," IEEE Transactions on Automatic Control, Vol. 33, pp. 780-783, 1988. https://doi.org/10.1109/9.1299
  12. T. H. Cho, K. S. Kim, W. O. Yoon, and S. B. Choi, "The improvement of aircraft position information with the unscented Kalman filter," International Journal of Database Theory and Application, Vol. 5, No. 2, pp. 75-82, 2012.

Cited by

  1. 다중 센서 인터페이스 시스템 설계 및 구현 vol.19, pp.6, 2015, https://doi.org/10.12673/jant.2015.19.6.515