References
- X. Zhang, C. Li, and W. Zheng, "Intrusion prevention system design," in Computer and INformation Technology, International Conference on. IEEE Computer Society, 2004, pp. 386-390.
- M. M. Mohammed, H. A. Chan, and N. Ventura, "Honeycyber: Automated signature generation for zero-day polymorphic worms," In Military Communications Conference, 2008. MlLCOM 2008. IEEE. IEEE, 2008, pp. 1-6.
- M. M. Mohammed, H. A. Chan, N. Ventura, M. Hashim, I. Amin, and E. Bashier, "Detection of zero-day polymorphic worms using principal component analysis," in Networking and Services(ICNS), 2010 Sixth International Conference on. IEEE, 2010, pp. 277-281.
- K. Griffin, S. Schneider, X. Bu, and T-C. Chiueh, "Automatic generation of string signatures for mal ware detection," in Recent Advances in Intrusion Detection. Springer, 2009, pp. 101-120
- G. Tahan, C. Glezer, Y. Elovici, and L. Rokach, "Auto-sign: an automatic signature generator for high-speed malware filtering devices," Journal in computer virology, vol 6, no. 2, pp. 91-103, 2010. https://doi.org/10.1007/s11416-009-0119-3
- A. Shabtai, E. Menahem, and Y. Elovici, "F-sign: Automatic, function-based signature generation for malware," Systems, Man, and Cyvernetics, Part C: Applications and Reviews, IEEE Transactions on, vol. 41. no. 4, pp. 494-508, 2011. https://doi.org/10.1109/TSMCC.2010.2068544
- D. M. Blei, "Probabilistic Topic Models," Communications of the ACM, 55(4) pp. 77-84, 2012 https://doi.org/10.1145/2133806.2133826
- D. M. Blei, A. Y. Ng, and M. I. Jordan, "Latent dirichlet allocation," the Journal of machine Learning research, vol. 3, pp. 993-1022, 2003
- S. Gerrish and D. M. Blei, "A language-based approach to measuring scholarly impact," The 27th International Conference on Machine Learning. pp. 375-382, 2010
- D. Newmani, and S. Block, "Probabilistic Topic Decomposition of an Eighteenth-Century Newspaper," Journal of the American Society for Information Science and Technology, 57(5), pp. 753-767, 2006 https://doi.org/10.1002/asi.20342
- W. J. Ryu, J. W. Ha, Md. Hijbul Alam, and S. K. Sang, "Extracing Trends from Twitter using a Topic Modeling Technique," Proceedings of Korea Computer Congress, pp. 191-193, 2013
- T. N. Rubin, A. Chambers, P.Smyth, and M. Steyvers, "Statistical topic models for multi-label document classification," Machine Learning, vol. 88, no 1-2, pp. 157-208, 2012 https://doi.org/10.1007/s10994-011-5272-5
- C. C. Zou, D. Towsley, and W. Gong, "Modeling and simulation study of the propagation and defense of internet e-mail worms," Dependable and Secure Computing, IEEE Transactions on vol. 4, no. 2, pp. 105-118, 2007 https://doi.org/10.1109/TDSC.2007.1001
- CAIDA, "The CAIDA Anonymized Internet Reaces 2014 Dataset," http://www.caida.org/data/passive/passive_2014_dataset.xml, 2014, [Online; accessed 26-March-2015].
- M. Parkour, "blog sobre comparticion de malware, recursoen linea disponible, "http://contagiodump.blogspot.com/, 2014, [Online; accessed 26-March-2015]
- D. Moore, C. Shannon et aI., "Code-red: a case study on the spread and victioms of an internet worm," in Proceedings of the 2nd ACM SIGCOMM Workshop on Internet measurment. ACM, pp. 273-284, 2002.
- M. Fossi, G. Egan, K. Haley, E. Johnson, T Mack, T. Adams, J. Blackbird, M. K. Low, D. Mazurek, D. McKinney et al., "Symantec internet security threat report trends for 2010," Volume XVI, 2011.