DOI QR코드

DOI QR Code

Understanding of the Shear Bands in Amorphous Metals

  • Park, Eun Soo (Department of Materials Science and Engineering, Seoul National University)
  • 투고 : 2015.06.23
  • 심사 : 2015.06.24
  • 발행 : 2015.06.30

초록

Shear banding is an evidence of plastic instability that localizes large shear strains in a relatively thin band when a material is plastically deformed. Shear bands have attracted much attention in amorphous metals, because shear bands are the key feature that controls the plastic deformation process. In this article, we review recent advances in understanding of the shear bands in amorphous metals regarding: dislocations versus shear bands, the formation of shear bands, hot versus cold shear bands, and property manipulation by shear band engineering. Although there are many key issues that remain puzzling, the understanding built-up from these approaches will provide a new insight for tailoring shear bands in amorphous metals, which potentially leads to unique property changes as well as improved mechanical properties. Indeed, this effort might open a new era to the future use of amorphous metals as a new menu of engineering materials.

키워드

참고문헌

  1. Argon A S (1979) Plastic deformation in metallic glasses. Acta Mater. 27, 47-58. https://doi.org/10.1016/0001-6160(79)90055-5
  2. Argon A S and Kuo H Y (1979) Plastic flow in a disordered bubble raft (an analog of metallic glass). Mater. Sci. Eng. 39, 101-109. https://doi.org/10.1016/0025-5416(79)90174-5
  3. Ashby M F (1972) A first report on deformation-mechanism maps. Acta Mater. 20, 887-897. https://doi.org/10.1016/0001-6160(72)90082-X
  4. Ashby M F and Greer A L (2006) Metallic glasses as structural materials. Scripta Mater. 54, 321-326. https://doi.org/10.1016/j.scriptamat.2005.09.051
  5. Brown G W, Hawley M E, Markiewicz D J, Spaepen F, and Barth EP (1999) Magnetic structure of deformation-induced shear bands in amorphous $Fe_{80}B_{16}Si_4$ observed by magnetic force microscopy. J. Appl. Phys. 85, 4415. https://doi.org/10.1063/1.369802
  6. Bruck H A, Rosakis A J, and Johnson W L (1996) The dynamic compressive behavior of beryllium bearing bulk metallic glasses. J. Mater. Res. 11, 503-511. https://doi.org/10.1557/JMR.1996.0060
  7. Chang H J, Kim D H, Kim Y M, Kim Y J, and Chattopadhyay K (2006) On the origin of nanocrystals in the shear band in a quasicrystal forming bulk metallic glass $Ti_{40}Zr_{29}Cu_9Ni_8Be_{14}$. Scripta Mater. 55, 509-512. https://doi.org/10.1016/j.scriptamat.2006.05.037
  8. Cheng Y Q and Ma E (2009) Configurational dependence of elastic modulus of metallic glass. Phys. Rev. B 80, 064104.
  9. Cheng Y Q, Han Z, Li Y, and Ma E (2009) Cold versus hot shear banding in bulk metallic glass. Phys. Rev. B 80, 134115. https://doi.org/10.1103/PhysRevB.80.134115
  10. Ding J, Patinet S, Falk M L, Cheng Y Q, and Ma E (2014) Soft spots and their structural signature in a metallic glass. Proc. Natl. Acad. Sci. U S A 111, 14052-14056. https://doi.org/10.1073/pnas.1412095111
  11. Gibert C J, Ager J W, Schroeder V, Ritchie R O, Lloyd J P, and Graham J R (1999) Light emission during fracture of a Zr-Ti-Ni-Cu-Be bulk metallic glass. Appl. Phys. Lett. 74, 3809-3811. https://doi.org/10.1063/1.124187
  12. Greer A L, Cheng Y Q, and Ma E (2013) Shear bands in metallic glasses. Mater. Sci. Eng. R 74, 71-132. https://doi.org/10.1016/j.mser.2013.04.001
  13. Gu X, Livi K J T, and Hufnagel T C (2003) Structure of shear bands in Zirconium-based metallic glasses observed by transmission election microscopy. Mater. Res. Soc. Proc. 754, CC7.9.1.-CC7.9.6.
  14. Guo H, Yan P F, Wang Y B, Tan J, Zhang Z F, Sui M L, and Ma E (2007) Tensile ductility and necking of metallic glass. Nature Mater. 6, 735-739. https://doi.org/10.1038/nmat1984
  15. Han Z, Wu W F, Li Y, Wei Y J, and Gao H J (2009) An instability index of shear band for plasticity in metallic glasses. Acta Mater. 57, 1367-1372. https://doi.org/10.1016/j.actamat.2008.11.018
  16. Hofmann D C (2010) Shape memory bulk metallic glass composites. Science 329, 1294-1295. https://doi.org/10.1126/science.1193522
  17. Lee M H, Lee K S, Das J, Thomas J, Kuhn U, and Eckert J (2010) Improved plasticity of bulk metallic glasses upon cold rolling. Scripta Mater. 62, 678-681. https://doi.org/10.1016/j.scriptamat.2010.01.024
  18. Lewandowski J J and Greer A L (2006) Temperature rise at shear bands in metallic glasses. Nature Mater. 5, 15-18. https://doi.org/10.1038/nmat1536
  19. Liu C T, Heatherly L, Easton D S, Carmichael C A, Schneibel J H, Chen C H, Wright J L, Yoo M H, Horton J A, and Inoue A (1998) Test environments and mechanical properties of Zr-base bulk amorphous alloys. Metall. Mater. Trans. A 29, 1811-1820. https://doi.org/10.1007/s11661-998-0004-6
  20. Lu J, Ravichandran G, Johnson WL (2003) Deformation behavior of the $Zr_{41.2}Ti_{13.8}Cu_{12.5}Ni_{10}Be_{22.5}$ bulk metallic glass over a wide range of strain-rates and temperatures. Acta. Mater. 51, 3429-3443. https://doi.org/10.1016/S1359-6454(03)00164-2
  21. Masumoto T and Maddin R (1975) Structural stability and mechanical properties of amorphous metals. Mater. Sci. Eng. 19, 1-24. https://doi.org/10.1016/0025-5416(75)90002-6
  22. Megusar J, Argon A S, and Grant N J (1979) Plastic flow and fracture in Pd80Si20 near Tg. Mater. Sci. Eng. 38, 63-72. https://doi.org/10.1016/0025-5416(79)90033-8
  23. Pauly S, Gorantla S, Wang G, Kuhn U, Eckert J (2010a) Transformationmediated ductility in CuZr-based bulk metallic glasses. Nature Mater. 9, 473-477. https://doi.org/10.1038/nmat2767
  24. Pauly S, Liu G, Gorantla S, Wang G, Kuhn U, Kim DH, Eckert J (2010b) Criteria for tensile plasticity in Cu-Zr-Al bulk metallic glasses. Acta. Mater. 58, 4883-4890. https://doi.org/10.1016/j.actamat.2010.05.026
  25. Reynolds O (1885) On the dilatancy of media composed of rigid particles in contact. Phil. Mag. 20, 469-481. https://doi.org/10.1080/14786448508627791
  26. Schall P, Weitz D A, and Spaepen F (2007) Structural rearrangements that govern flow in colloidal glasses. Science 318, 1895-1899. https://doi.org/10.1126/science.1149308
  27. Schuh C A, Hufnagel T C, and Ramamurty U (2007) Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067-4109. https://doi.org/10.1016/j.actamat.2007.01.052
  28. Schuh C A, Lund A C, and Nieh T G (2004) New regime of homogeneous flow in the deformation map of metallic glasses: elevated temperature nanoindentation experiments and mechanistic modeling. Acta Mater. 52, 5879-5891. https://doi.org/10.1016/j.actamat.2004.09.005
  29. Shan Z W, Li J, Cheng Y Q, Minor A M, Syed Asif S A, Warren O L, and Ma E (2008) Plastic flow and failure resistance of metallic glass: Insight from in situ compression of nanopillars. Phys. Rev. B 77, 155419. https://doi.org/10.1103/PhysRevB.77.155419
  30. Song S X and Nieh T G (2009) Flow serration and shear-band viscosity during inhomogeneous deformation of a Zr-based bulk metallic glass. Intermetallics 17, 762-767. https://doi.org/10.1016/j.intermet.2009.03.005
  31. Song S X, Bei H, Wadsworth J, and Nieh T G (2008) Flow serration in a Zr-based bulk metallic glass in compression at low strain rates. Intermetallics 16, 813-818. https://doi.org/10.1016/j.intermet.2008.03.007
  32. Spaepen F (1977) A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Mater. 25, 407-415. https://doi.org/10.1016/0001-6160(77)90232-2
  33. Spaepen F (2006) Metallic glasses: Must shear bands be hot? Nature Mater. 5, 7-8. https://doi.org/10.1038/nmat1552
  34. Wu Y, Xiao Y, Chen G, Liu C T, and Lu Z P (2010) Bulk Metallic Glass Composites with Transformation-Mediated Work-Hardening and Ductility. Adv. Mater. 22, 2770-2773. https://doi.org/10.1002/adma.201000482
  35. Wu Y, Zhou D Q, Song W L, Wnag H, Zhang Z Y, Ma D, Wang X L, and Lu Z P (2012) Ductilizing bulk metallic glass composite by tailoring stacking fault energy. Phys. Rev. Lett. 109, 245506. https://doi.org/10.1103/PhysRevLett.109.245506
  36. Yang B, Liaw P K, Wang G, Morrison M, Liu C T, Buchanan R A, and Yokoyama Y (2004) In-situ thermographic observation of mechanical damage in bulk-metallic glasses during fatigue and tensile experiments. Intermetallics 2, 1265-1274.
  37. http://faculty.virginia.edu/teamhowe/files/EMFacility.html