DOI QR코드

DOI QR Code

Thermal Decomposition Activation Energy of Liquid Crystalline Epoxy Composite with Zirconia Filler

지르코니아를 함유한 열경화성 액정 에폭시의 열분해 활성화 에너지

  • Moon, Hee Jung (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Kim, Kyung Ho (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Hwangbo, Sejin (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Cho, Seung Hyun (Department of Organic Materials and Fiber Engineering, Soongsil University)
  • 문희정 (숭실대학교 유기신소재.파이버공학과) ;
  • 김경호 (숭실대학교 유기신소재.파이버공학과) ;
  • 황보세진 (숭실대학교 유기신소재.파이버공학과) ;
  • 조승현 (숭실대학교 유기신소재.파이버공학과)
  • Received : 2015.04.29
  • Accepted : 2015.06.10
  • Published : 2015.06.30

Abstract

A liquid crystalline thermosetting epoxy 4,4'-diglycidyloxy-${\alpha}$-methylstilbene (DOMS) was synthesized using sulfanilamide as the curing agent. To heat cure the epoxy, filler contents of 0.5-5 wt% zirconia were used. Thermogravimetric analysis was performed, and the activation energy was calculated using the Kissinger and Flynn-Wall methods. The activation energy was proportional to the amount of zirconia used. As the activation energies needed for 1% and 10% decomposition were similar, the thermal decomposition was predicted to have the same mechanism.

Keywords

References

  1. B. Hirn, C. Carfagna, and R. Lanzetta, "Linear Precursors of Liquid Crystalline Thermosets", J. Mater. Chem., 1996, 6, 1473-1478. https://doi.org/10.1039/jm9960601473
  2. E. Douglas, D. Langlois, and B. Benicewicz, "Synthesis, Phase Behavior, and Curing Studies of Bisacetylene Rigid-Rod Thermosets", Chem. Mater., 1994, 6, 1925-1933. https://doi.org/10.1021/cm00047a007
  3. J. W. Schultz and R. P. Chartoff, "Photopolymerization of Nematic Liquid Crystal Monomers for Structural Applications:Molecular order and Orientation Dynamics", Polymer, 1998, 39, 319-325. https://doi.org/10.1016/S0032-3861(97)00261-9
  4. H. J. Sue, J. D. Earls, and R. E. Hefner, Jr, "Fracture Behaviour of Liquid Crystal Epoxy Resin Systems Based on thd Diglycidyl Ether of 4,4'-dihydroxy-$\alpha$-methylstilbene and Sulphanilamide", J. Mater, Sci., 1997, 32, 4031-4037. https://doi.org/10.1023/A:1018641621725
  5. J. Liu, C. Wang, G. A. Campbell, J. D. Earls, and R. D. Priester, Jr, "Effects of Liquid Crystalline Structure Formation on the Curing Kinetics of an Epoxy Resin", J. Polym. Sci., Part A: Polym. Chem., 1997, 35, 1105-1124. https://doi.org/10.1002/(SICI)1099-0518(19970430)35:6<1105::AID-POLA14>3.0.CO;2-A
  6. F. Yao, Q. Wu, Y. Lei, W. Guo, and Y. Xu, "Thermal Decomposition Kinetics of Natural Fibers: Activaion Energy with Dynamic Thermogravimetric Analysis", Polym. Degrad. Stab., 2008, 93, 90-98. https://doi.org/10.1016/j.polymdegradstab.2007.10.012
  7. E. S. Ahn, N. J. Gleason, and J. Y. Ying, "The Effect of Zirconia Reinforcing Agnets on the Microstructure and Mechanical Properties of Hydroxyapatite-based Nanocomposties", J. Am. Ceram. Soc., 2005, 88, 3374-3379. https://doi.org/10.1111/j.1551-2916.2005.00636.x
  8. M. Sajjad, B. Feichtenschlager, S. Pabisch, J. Svehla, T. Koch, S. Seidler, H. Peterlik, and G. Kickelbick, "Study of the Effect of the Concentration, Size and Surface Chemistry of Zirconia and Silica Nanoparticle Fillers Within an Epoxy Resin on the Bulk Properties of the Resulting Nanocomposties", Polym. Int., 2012, 61, 274-285. https://doi.org/10.1002/pi.3183
  9. S. H. Cho, J. Y. Lee, and E. P. Doulgas, "Synthesis and Thermal Properties of Liquid Crystalline Thermoset Containing Rigidrod Epoxy", High Perform. Polym., 2006, 18, 83-99. https://doi.org/10.1177/0954008306056484
  10. L. C. Chien, C. Lin, D. S. Fredley, and J. W. McCargar, "Sidechain Liquid Crystal Epoxy Polymer Binders for Polymerdispersed Liquid Crystals", Macromolecules, 1992, 25, 133-137. https://doi.org/10.1021/ma00027a022
  11. E. J. Choi, H. K. Ahn, J. K. Lee, and J. I. Jin, "Liquid Crystalline Twin Epoxy Monomers Based on Azomethone Mesogen: Synthesis and Curing with Aromatic Diamines", Polymers, 2000, 41, 7617-7625. https://doi.org/10.1016/S0032-3861(00)00111-7
  12. F. Yao, Q. Wu, Y. Lei, W. Guo, and Y. Xu, "Thermal Decomposition Kinetics of Natural Fibers: Activation Energy with Dynamic Thermogravimetric Analysis", Polym. Degrad. Stab., 2008, 93, 90-98. https://doi.org/10.1016/j.polymdegradstab.2007.10.012
  13. J. S. Oh, J. M. Lee, and W. S. Ahn, "Non-isothermal TGA Analysis on Thermal Degradation Kinetics of Modified-NR Rubber Composites", Polymer(Korea), 2009, 33, 435-440.
  14. L. Barral, J. Cano, J. Lopez, I. Lopez-Bueno, P. Nogueira, M. J. Abad, and C. Ramirez, "Decomposition Behavior of Epoxyresin Systems Cured by Diamines", Eur. Polym. J., 2000, 36, 1231-1240. https://doi.org/10.1016/S0014-3057(99)00166-4

Cited by

  1. Thermal Decomposition Behavior of LCT Composites with Modified Zirconia Filler vol.53, pp.4, 2016, https://doi.org/10.12772/TSE.2016.53.293