DOI QR코드

DOI QR Code

멀티센서 초소형 무인항공기 기반의 고속 자동 매핑 시스템

A High-speed Automatic Mapping System Based on a Multi-sensor Micro UAV System

  • 투고 : 2015.03.26
  • 심사 : 2015.06.26
  • 발행 : 2015.06.30

초록

초소형 무인항공기를 기반으로 대상영역에 대한 공간정보를 신속하게 자동으로 획득할 수 있는 긴급 매핑 시스템을 개발하였다. 본 시스템은 사용자가 초소형 무인항공기 운용이나 사진측량에 대한 전문지식이 없어도 쉽게 사용할 수 있게 설계되었다. 항공 데이터 획득을 위해 디지털 카메라, GPS/IMU, 센서 통합 및 동기화를 담당하는 제어보드가 탑재된 초소형 무인항공기 시스템을 구축하였다. 또한, 항공부분의 운용을 지원하는 비행계획 수립 소프트웨어와 획득된 데이터의 품질을 평가하여 선별하고, 영상 매칭, 지오레퍼런싱, 정사영상 생성과 같은 일련의 과정을 고속 자동으로 수행하는 소프트웨어를 개발하였다. 본 시스템을 적용하여 $400m{\times}300m$ 크기의 대상지역에 대해 획득된 3cm 해상도의 57장 영상을 고속으로 자동처리하여 30분 이내 개별정사영상으로 생성할 수 있었다.

We developed a micro UAV based rapid mapping system that provides geospatial information of target areas in a rapid and automatic way. Users can operate the system easily although they are inexperienced in UAV operation and photogrammetric processes. For the aerial data acquisition, we constructed a micro UAV system mounted with a digital camera, a GPS/IMU, and a control board for the sensor integration and synchronization. We also developed a flight planning software and data processing software for the generation of geo-spatial information. The processing software operates automatically with a high speed to perform data quality control, image matching, georeferencing, and orthoimage generation. With the system, we have generated individual ortho-images within 30 minutes from 57 images of 3cm resolution acquired from a target area of $400m{\times}300m$.

키워드

참고문헌

  1. Agisoft. 2015, Agitsoft Photoscan Professional, Accessed 22 February 2015. http://www.agisoft.com
  2. Choi, K. A; Lee, I. P. 2009, Image Georeferencing using AT without GCPs for a UAV-based Low-Cost Multisensor System, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography, 27(2):249-260.
  3. Choi, K. A; Lee, J. H; Lee, I. P. 2011, Development of a Close-range Real-time Aerial Monitoring System, Journal of Korea Spatial Information Society, 19(4):21-31.
  4. Eisenbeiss, H; Lambers, K; Sauerbier, M; Zhang, L. 2005, Photogrammetric documentation of an archaeological site (Palpa, Peru) using an autonomous model helicopter, International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 34(5):238-243.
  5. Hernandez-Lopez, D; Felipe-Garcia, B; Gonzalez- Aguilera, D; Arias-Perez, B. 2013, An Automatic Approach to UAV Flight Planning and Control for Photogrammetric Applications, Photogrammetric Engineering & Remote Sensing, 79(1):87-98. https://doi.org/10.14358/PERS.79.1.87
  6. Jang, H. S. 2008, Process of Digital Elevation Model Using RC Helicopter Surveying System. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography, 26(2): 111-116.
  7. Jeon, E. I; Choi K. A; Lee I. P. 2014, Data Acquisition, Processing, and Evaluation using a Micro UAV Based Multi-Sensor System, Paper presented at the International Symposium on Remote Sensing, Busan, April 16-18.
  8. Kim, D. I; Song, Y. S; Kim, G. H; Kim, C. W. 2014, A Study on the Application of UAV for Korean Land Monitoring, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography, 32(1):29-38. https://doi.org/10.7848/ksgpc.2014.32.1.29
  9. Kim, S. G; Sung, Y. D; Kim, G. O. 2012, A study on methods of utilizing unmanned aerial vehicle (UAV) in the area of spatial information, Journal of the Korean Society of Cadastre, 6(1):169-178
  10. Kim, T. H; Kim, K. H; Nam, G. N; Shim, J. H; Choi, W. J; Cho, M. H. 2010, Development of Natural Disaster Damage Investigation System using High Resolution Spatial Images, Journal of Korea Spatial Information Society, 12(1):57-65.
  11. Niethammer, U; Rothmund, S; Schwaderer, U; Zeman, J. and Joswig, M., 2011, Open source image-processing tools for low-cost UAV-based landslide investigations, International Archives of the Photogrammetry, Paper presented at the Remote Sensing and Spatial Information Sciences, Zurich, September 14-16.
  12. Remondino, F; Barazzetti, L; Nex, F; Scaioni, M; Sarazzi, D. 2011, UAV photogrammetry for mapping and 3d modeling-current status and future perspectives, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 38(1): 25-31.
  13. Ries, J. B; Marzolff, I. 2003, Monitoring of gully erosion in the Central Ebro Basin by large-scale aerial photography taken from a remotely controlled blimp, Catena, 50(2): 309-328. https://doi.org/10.1016/S0341-8162(02)00133-9
  14. Sona, G; Pinto, L; Pagliari, D; Passoni, D; Gini, R. 2014, Experimental analysis of different software packages for orientation and digital surface modelling from UAV images. Earth Science Informatics, 7(2):97-107. https://doi.org/10.1007/s12145-013-0142-2
  15. Tanathong S; Lee. I. P. 2014, Using GPS/INS data to enhance image matching for real-time aerial triangulation, Computers & Geosciences, 72: 244-254. https://doi.org/10.1016/j.cageo.2014.08.003
  16. Tokmakidis, K; Scarlatos, D. 2002, Mapping excavations and archaeological sites using close range photos, Presented at the International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, Corfu, September 2-6.
  17. Turner, D; Lucieer, A; Wallace, L. 2014, Direct georeferencing of ultrahigh-resolution uav imagery, IEEE Transactions on Geoscience and Remote Sensing, 52(5):2738-2745. https://doi.org/10.1109/TGRS.2013.2265295
  18. UVSIA. 2011, UAV Categories, Unmmaned Vehicle Systems, International Association, Accessed February 20. http://www.uav-info.com