DOI QR코드

DOI QR Code

Model Tests for Deriving Failure Parameter during Levee Overflow

제방 월류시 붕괴매개변수 도출을 위한 모형실험

  • Received : 2015.02.10
  • Accepted : 2015.04.10
  • Published : 2015.06.30

Abstract

According to the damage investigation in 2002, the failures of river levee were caused by overflow, erosion, and unstable body conditions due to piping, inappropriate embanking materials, and poor compaction. Especially, overflow was identified as a main reason that induces levee failure by 39.5% from the distribution of failure types. The major parameters, such as levee collapsing angle (${\theta}$), levee collapsing rate (k) affect inundation velocity and area size during the analysis of inundation modeling, however, domestic research effort on this area is still insufficient. In this paper authors conducted levee failure experiments of 4 levee height types, 0.20 m, 0.25 m, 0.30 m, and 0.40 m based on theassumption of Froude Similarity (${\lambda}_{Fr}=1$). As a result, the authors suggested a levee failure mechanism according to the levee heights (H), a collapse extension lengthwhich is around, levee collapse angle (${\theta}$), levee collapse rate (k).

2002년 피해조사 결과에 따르면, 하천제방 관련 홍수피해는 월류, 침식, 제체불안정(파이핑, 부적절한 축제재료선정, 다짐불량 등), 구조물에 의한 파괴 등으로, 월류에 의한 제방붕괴는 39.5 %로서 주요 요인인 것으로 평가되었다. 한편, 제방붕괴각(${\theta}$), 제방붕괴율(k) 등 관련 월류제방 붕괴특성은 침수모델링 해석 시 침수속도 및 면적 등에 영향을 미치나 국내 관련 연구 실적이 미진한 실정에 있다. 본 논문에서는 프루드(Froude) 상사(${\lambda}_{Fr}=1$)를 가정한 제방고(0.20 m, 0.25 m, 0.30 m, 0.40 m)에 따른 제방붕괴모형실험을 수행하여 제방고 변화(H)에 따른 제방붕괴 메카니즘, 붕괴연장, 제방붕괴각(${\theta}$), 제방붕괴율(k) 등을 제시하였다.

Keywords

References

  1. Fread, D. L. (1977), "The Development and Testing of a Dam-Break Flood Forecasting Model", Proc. of the Dam-Break Flood Routing Workshop, U. S. Water Resources Council, Washington, D. C., pp.164-197.
  2. Hanson, G. J., Cook, K. R., and Hunt, S. L. (2005), "Physical modeling of overtopping erosion and breach formation of cohesive embankments." Trans. ASABE, 48(5), 1783-1794. https://doi.org/10.13031/2013.20012
  3. Kim, J. M., Choi, B. H., Cho, S. D., Joo, T. S., Kim, H. B., and Rhee, J. W. (2003), "A Study of Load Reduction Effect on Conduits Using Compressible Inclusion", Journal of Korea Geosynthetics Society, Korea Geosynthetics Society, Vol.2, No.2, pp.3-11.
  4. Kim, K. H., Yoon, K. S., Lee, J. W., Lee, S. J., Yu, K. D., Cha, J. H., Lee, D. S., Hwangbo, J. G., Cho, S. D., Kim, J. M., Choi, B. H., and Oh, S. Y. (2004), Levee development of advanced technologies relevant, final report, Korea Agency for Infrastructure Technology Advancement.
  5. korea Water Resource Association(2009), Design criteria rivers commentary.
  6. Lee, K. H., Kim, S. W., Yu, S. Y., Kim, S. H, Cho, J. W., and Kim, J. M. (2013), "Delopment of a Hydrograph Triggered by Earth-Dam-Break for Compilling a Flood Hazad Map", Journal of Korea Society of Engineering Geology, Korea Society of Engineering Geology, Vol.23, No.4, pp.381-387.
  7. Lee, S. T. (1999), An experimental study on the cross section characteristics of river levees and their collapse phase, Ph. D. Dissertation, University of Kyonggi.
  8. MacDonald, T. C., and Jennifer, L. M. (1984), "Breaching Characteristics of Dam Failures", J. of HY Div., Vol.110, No.5, ASCE, pp.567-586. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:5(567)
  9. Mohamed, M.A.A., Morris, M., Hanson, G.J. and Lakhal, K. (2004), "Breach Formation: Laboratory and Numerical Modeling of Breach Formation", Proc. Dam Safety 2004, ASDSO Phoenix, Arizona, USA.
  10. Nakajima, H. (2003), River Levee, Kibodang Press, japan.
  11. Singh, K. P. (1982), "Dam Safety Program", Univ. of Illinois, Champaign, Illinois.