DOI QR코드

DOI QR Code

Developmental characteristics of Zophobas atratus (Coleoptera: Tenebrionidae) larvae in different instars

  • Kim, Sun Young (Applied Entomology Division, National Academy of Agricultural Science, RDA) ;
  • Kim, Hong Geun (Applied Entomology Division, National Academy of Agricultural Science, RDA) ;
  • Song, Sung Ho (Gyeonggi Do Agricultural Research & Extension Services) ;
  • Kim, Nam Jung (Applied Entomology Division, National Academy of Agricultural Science, RDA)
  • 투고 : 2015.05.08
  • 심사 : 2015.06.16
  • 발행 : 2015.06.30

초록

The giant mealworm beetle, Zophobas atratus (Coleoptera: Tenebrionidae), is reared for commercial purposes as a live feed for animals. In 2011, it was officially introduced in Korea, and since then it has been considered commercially important. This beetle is a good animal feed resource because of its high protein content with balanced nutrients. However, its life stage characteristics have not been clearly described, especially of the larval stage that can be used as commercial products. To this end, in our study, we determined the number of Z. atratus larval instars, and described their characteristics at each stage, providing basic information about this beetle. Z. atratus larvae required eight to nine d of incubation period before hatching. The first instar period comprised three to four d. There were relatively large variations in each instar period, except for the first instar. Before the adults emerged, most of the individuals passed through15 to 18 instars. The highest pupation rate, 25.71%, was observed in both 16th and 17th instars. Body length gradually increased with each successive instar and it reached its maximum at the 18th instar. The color of larvae was white at the first instar, and gradually turned brown after the second instar.

키워드

Introduction

Zophobas atratus Fabricius (Coleoptera: Tenebrionidae) is a large neotropical beetle. It is found on fruit bat guano and organic litter in its natural environment (Tschinkel and Willson, 1971; Quennedey et al., 1995). The shape of this beetle is similar to that of mealworm, Tenebrio molitor, a well-known food resource for small pets, but it is several times larger than a mealworm. It is not a domestic species of Korea, but originated from South and Central America (Park et al., 2013). In the Animal and Plant Quarantine Agency notification 2013-118, this beetle has been included in the list of excluded quarantine pests in 2011 , and has been allowed to be imported live as animal feed (Animal and Plant Quarantine Agency, 2013).

Z. atratus is larger than T. molitor, and is also known as super worm or king worm (Park et al., 2013). It has been used as a protein source for small pets such as birds, reptiles, and small mammals (Jabir et al., 2012; Park et al., 2013). Moreover, because of the rising prices of fish meal, which is widely used a protein source in animal feed, alternative protein sources are sought to reduce the production cost of various animal feeds. Recently, insect-based diet has become a strong candidate as an alternative to fish meal because fish raised on insect-based diet showed similar growth performance to those raised on conventional fish meal-based diet (Jabir et al., 2012).

Much attention has been focused on Z. atratus because of its economic benefits. Previous studies have reported that Z. atratus is highly dependent on isolation for the onset of metamorphosis (Quennedey et al., 1995; Aribi et al., 1997). In crowded conditions, Z. atratus larvae showed increasing size and weight, forming supernumerary larval instars that did not pupate until death (Tschinkel and Willson, 1971). This inhibition of pupation induced by crowding conditions has also been described in other tenebrionid species, for example, Tribolium freeman (Nakakita, 1982; Kotake et al., 1993; Quennedey et al., 1995).

The number of post-embryonic molts in T. molitor is known to range from eight to more than 20 larval molts, depending on various intrinsic and extrinsic factors, such as food quality and individual density (Connat et al., 1991). Previous studies have focused on various abiotic factors, including food quality, humidity (Murray, 1968; Urs and Hopkins, 1973), temperature (Ludwig, 1956), and photoperiod (Tyschchenko and Sheyk Ba, 1986) that affected the number of larval instars. However, the characteristics of different larval stages of Z. atratus commercialized in Korea remain unclear. In addition, the precise number of instars that Z. atratus larvae go through at the optimal temperature of 25℃ is almost unknown. To this end, we investigated the characteristics of Z. atratus during different larval stages and determined the average number of larval instars. The results of this study will provide basic information for future investigations on the physiological characteristics of different instars, as well as for more effective commercialization of Z. atratus.

 

Materials & Methods

Breed condition

Z. atratus adults (about 120 individuals) were raised in acrylic boxes (58.2 cm width × 49.5 cm length × 17 cm height) at 25±3℃, 50–70% relative humidity (RH) and a photoperiod of 14L:10D. In each acrylic box, wheat bran (ca. 3 cm deep) was placed as a food source, and a Chinese cabbage leaf was placed on the wheat bran layer as a moisture source. Once a mating couple was observed, they were moved to a petri dish (10 cm diameter × 1 cm height) containing bran. Eggs with hardened shells were obtained after three d. We collected 40 eggs to count the number of larval instar and to measure the body size. Each egg was transferred to a petri dish (5 cm diameter × 1.5 cm height) containing wheat bran and Chinese cabbage (1 g). This experiment was repeated 3 times.

Counting the number of larval instar and measuring body length of each instar

Each egg was reared in a petri dish (5 cm diameter × 1.5 cm height) with wheat bran at 25±3℃, 50–70% RH, and 14L:10D photoperiod. The condition of the larvae was checked every day to determine the number of instars. When the larval exuvium was observed, the larvae were removed from the petri dishes. After pupation, instar counting was stopped.

To measure the body length of each instar, the body lengths of ten larvae were measured using a Vernier caliper after each larval molting. Generally, the width of the head capsule was measured because it exhibits distinct variation between the larval stages (Hsia and Kao, 1987). In this experiment, however, the body lengths of larvae were also measured because of the small head capsule size during the early larval stages. In addition, we took photographs of each instar using a digital camera (SX220 HS, Canon, Tokyo, Japan ).

 

Results & Discussion

As shown in Table 1, the average incubation period for hatching was eight – nine d, and the duration for the first instar three or four d. Interestingly, the size of larvae was not significantly different for different incubation periods or first instar durations. Between the second and 18th instars, the duration of each instar showed large variations among individuals. The first pupation was observed at the 13th instar even though only 2% of larvae were pupated.

Table 1.Larval instar period, pupation rate, and pupal weight of the 13th to 18th instars, and body lengths of each larval stage of Zophobas atratus.

Previous studies have shown that the body size of larvae is highly co-related with the pupation rate (Sehnal, 1985). The developmental variability in tenebrionid beetle depends on two parameters: the number of larval instars and the duration of each larval instar. Previous studies have suggested that juvenile hormones play a key role in the mealworm developmental variability; the alimentary periods as well as the percentage of larval molts are increased by juvenoids (Feyereisen, 1985; Connat et al., 1991). In addition, Z. atratus is a model organism to study the relationship between external events and endocrine factors that regulate the onset of insect metamorphosis (Riddiford, 1976).

The lack of uniformity among larvae between the second and 18th instars may be caused by variations in nutrition. A study on Manduca sexta by Nijhout (1975) revealed that the number of instars increased under poor nutritional conditions. However, it remains to be verified whether this phenomenon occurs in Z. atratus or not. Furthermore, the symptoms caused by pathogens are highly similar to those of poor nutritional conditions in Z. atratus. It was also revealed that the gregarious nature of T. molitor enhanced its ability to resist pathogens (Barnes and Siva- Jothy, 2000). Therefore, further studies are required to investigate whether the duration of each instar is influenced by nutritional status, pathogen activity, or larval behavior.

The first pupation was observed at 13th instar. Approximately 85.70% of pupation was observed between the 15th and 18th instars. The largest proportion of pupae (25.71%) was observed at the 16th and 17th instars. In other words, most of the larvae in this experiment exhibited 15 to 18 instars in their life cycle. T. molitor larvae from old parents showed shorter larval period (Tracey, 1958). Moreover, the growth rate of offspring from old parents was delayed (Fiore, 1960). Therefore, we suggest that further studies should investigate larvae from the same age groups to reduce the effects caused by the parents’ age. Further studies using a wide range of rearing temperatures might elucidate the effects of rearing temperature on the number of larval stages.

Body length of Z. atratus instars increased gradually, and reached the maximum body length in the 18th instar. Mortality was mostly observed between the second and fifth instars; one larva died in the 17th instar. Based on these results, we conclude that more intensive care during the early stages of Z. atratus larvae leads to successful pupation when the larvae are reared individually.

The first instar was white, and gradually turned brown from or after the second instar. In particular, the anterior and posterior ends were darker than the middle of the body. Except for the color change, no significant morphological differences were detected in Z. atratus larvae (Fig. 1). We also checked the cuticle color, which typically changes based on the population density (Applebaum and Heifetz, 1999), and has been correlated with resistance in a lepidopteran (Reeson et al., 1998).

Fig. 1.Different larval instars. Photographs were taken after the exuvium was observed.

We observed more severe cannibalism in pupae or larvae that were close to molt in Z. atratus under grouped conditions. In addition, successful pupation requires enough space for the each last instar larva. Previous study showed that successful pupation was affected by population density because only Z. atratus larvae with enough isolated space successfully pupated (Tschinkel, 1981). Cannibalism of pharate pupae by active larvae may be the selective factor that evolved to the inhibition of pupation by crowding, higher larval growth rates, and higher fecundity (Tschinkel, 1978; Tschinkel, 1981).

In this study, we determined the incubation period of eggs, the duration of the first instar, and the average number of larval instars in Z. atratus. Our results will provide a basis for further studies on this species, as well an insight into an important protein source in commercial feeds for various animals.

참고문헌

  1. Animal and Plant Qurantine Agency. [Online] Insect pests and pet insects. http://www.qia.go.kr/plant/pest/plant_insec_rule.jsp#this.
  2. Applebaum SW, Heifetz Y (1999) Density-dependent physiological phase in insects. A Rev Entomol 44, 317-341. https://doi.org/10.1146/annurev.ento.44.1.317
  3. Aribi N, Quennedey A, Pitoizet N, Delbecque JP (1997) Ecdysteroid titres in a Tenebrionid beetle, Zophobas atratus: effects of grouping and isolation. J Insect Physiol 43(9), 815-821. https://doi.org/10.1016/S0022-1910(97)00029-2
  4. Barnes AI, Siva-Jothy MT (2000) Density-dependent prophylaxis in the mealworm beetle Tenebrio molitor L. (Coleoptera: Tenebrionidae):cuticular melanization is an indicator of investment in immunity. Proc R Soc Lond B 267, 177-182. https://doi.org/10.1098/rspb.2000.0984
  5. Connat JL, Delbecque JP, Glitho I, Delachambre J (1991) The onset of metamorphosis in Tenebrio molitor larvae (Insecta, Coleoptera) under grouped, isolated and starved conditions. J Insect Physiol 37(9), 653-662. https://doi.org/10.1016/0022-1910(91)90042-X
  6. Feyereisen R (1985) Regulation of juvenile hormone titer: synthesis. In Comprehensive Insect Physiology, Biochemistry and Pharmacology (EdsKerkut GA and Gilbert LI) Vol 7, pp. 391-429. Pergamon Press, Oxford.
  7. Fiore C (1960) Effects of temperature and parental age on the life cycle of the dark mealworm, Tenebrio obscurus Fabricius. J N Y Entomol Soc 68(1), 27-35.
  8. Hsia WT, Kao SS (1987) Application of head width measurements for instar determination of corn earworm larvae. Plant Prot Bull (Taiwan R.O.C) 29, 277-282.
  9. Jabir MDAR, Razak SA, Vikineswary S (2012) Nutritive potential and utilization of super worm (Zophobas morio) meal in the diet of nile tilapia (Oreochromis niloticus) juvenile. Afr J Biotechnol 11, 6592-6598.
  10. Kotaki T, Nakakita H, Kuwahara M (1993) Crowding inhibits pupation in Tribolium freemani (Coleoptera: Tenebrionidae): effects of isolation and juvenile hormone analogues on development and pupation. Appl Entomol Zool 28, 43-52. https://doi.org/10.1303/aez.28.43
  11. Ludwig D (1956) Effects of temperature and parental age on the life cycle of the mealworm Tenebrio molitor L. Ann Ent Soc Am 49, 12-15. https://doi.org/10.1093/aesa/49.1.12
  12. Murray DRP (1968) The importance of water in the normal growth of larvae of Tenebrio molitor. Entomologia Exp Appl 11, 149-168. https://doi.org/10.1111/j.1570-7458.1968.tb02041.x
  13. Nakakita H (1982) Effect of larval density on pupation of Tribolium freeman Hinton (Coleoptera: Tenebrionidae). Appl Entomol Zool 17, 209-215.
  14. Nijhout HF (1975) A threshold size for metamorphosis in the tobacco hornworm, Manduca Sexta (L.). Biol Bull 149, 214-225. https://doi.org/10.2307/1540491
  15. Park HC, Jung BH, Han TM, Lee YB, Kim SH, Kim NJ (2013) Taxonomy of introduced commercial insect, Zophobas atratus (Coleoptera; Tenebrionidae) and a comparision of DNA barcoding with similar tenebrionids, Promethis valgipes and Tenebrio molitor in Korea. J Seric Entomol Sci 51(2), 185-190. https://doi.org/10.7852/jses.2013.51.2.185
  16. Quennedey A, Aribi N, Everaerts C, Delbecque JP (1995) Postembryonic development of Zophobas atratus Fab. (Coleoptera: Tenebrionidae) under crowded or isolated conditions and effects of juvenile hormone analogue applications. J Insect Physiol 41(2), 143-152. https://doi.org/10.1016/0022-1910(94)00091-T
  17. Reeson AF, Wilson K, Gunn A, Hails RS, Goulson D (1998) Baculovirus resistance in the noctuid Spodoptera exempta is phenotypically plastic and responds to population density. Proc R Soc Lond B 265, 1787-1791. https://doi.org/10.1098/rspb.1998.0503
  18. Riddiford LM (1976) Hormonal control of insect epidermal cell commitment in vitro. Nature 259, 115-117. https://doi.org/10.1038/259115a0
  19. Sehnal F (1985) Growth and life cycles. In Comprehensive Insect Physiology, Biochemistry and Pharmacology (EdsKerkut GA and Gilbert LI) Vol 2, pp. 1-86. Pergamon Press, Oxford.
  20. Tracey SKM (1958) Effects of parental age on the life cycle of the mealworm, Tenebrio molitor Linnaeus. Ann Ent Soc America 51, 429-432. https://doi.org/10.1093/aesa/51.5.429
  21. Tschinkel WR, Willson CD (1971) Inhibition of pupation due to crowding in some tenebrionid beetles. J Exp Zool 176, 137-146. https://doi.org/10.1002/jez.1401760203
  22. Tschinkel WR (1978) Dispersal behavior of the larval tenebrionid beetle, Zophobas rugipes. Physiol Zool 51, 300-313. https://doi.org/10.1086/physzool.51.3.30155747
  23. Tschinkel WR (1981) Larval dispersal and cannibalism in a natural population of Zophobas atratus (Coleoptera: Tenebrionidae). Animal Behavior 29, 990-996. https://doi.org/10.1016/S0003-3472(81)80052-8
  24. Tyschchenko VP, Sheyk Ba A (1986) Photoperiodic regulation of larval growth and pupation of Tenebrio molitor L. (Coleoptera: Tenebrionidae). Ent Rev 65, 35-46.
  25. Urs KCD, Hopkins TL (1973) Effect of moisture on growth rate and development of two strains of Tenebrio molitor L. (Coleoptera, Tenebrionidae). J Stored Prod Res 8, 291-297. https://doi.org/10.1016/0022-474X(73)90045-3

피인용 문헌

  1. Effects of brewer's spent grain on the growth and nutrition of the giant mealworm beetle, Zophobas atratus vol.37, pp.2, 2015, https://doi.org/10.7852/ijie.2018.37.2.73
  2. 탈지 전, 후 아메리카왕거저리(Zophobas atratus) 유충의 영양성분 및 유해물질 비교분석 vol.29, pp.12, 2015, https://doi.org/10.5352/jls.2019.29.12.1378
  3. Evaluation of Subchronic Oral Dose Toxicity of Freeze-Dried Skimmed Powder of Zophobas atratus Larvae (frpfdZAL) in Rats vol.9, pp.8, 2015, https://doi.org/10.3390/foods9080995
  4. A Systematic Review on Viruses in Mass-Reared Edible Insect Species vol.13, pp.11, 2015, https://doi.org/10.3390/v13112280