DOI QR코드

DOI QR Code

The variation of biomimetic knee joint movement according to 3D shape information

3차원 형상정보에 따른 생체모방형 무릎관절 구동의 변화

  • 정훈진 (원광대학교 기계공학과) ;
  • 이승재 (원광대학교 기계자동차공학부)
  • Received : 2015.06.10
  • Accepted : 2015.06.29
  • Published : 2015.06.30

Abstract

We fabricated a 3D knee joint model through the imaging processing. The 3D shape information is different depends on specific conditions when the shape of real knee joint is extracted from CT/MRI sliced images. The two types of joint models were fabricated by using 3D printer in order to analysis of joint movement by slight difference of 3D shape information. The compressive force experiments were performed by using knee joint model. As the results, the compressive forces were changed with respect to the difference of geometry. Consequently, feasibility test should be performed before developing biomimetic bioreactor.

본 논문에서는 인체의 CT/MRI에서 단층 촬영된 무릎관절을 영상처리 과정을 거쳐 3차원 관절 모델을 제작하였다. 실제 무릎관절의 형상을 추출할 때 설정 조건에 따라 3차원 형상정보가 달라질 수 있다. 이러한 미세한 3차원 형상정보의 차이에 따른 무릎관절의 구동특성을 분석하기 위해 2가지의 관절 모델을 3차원 프린터를 이용하여 제작하였다. 제작된 관절모델을 이용하여 관절구동 시 압축력 실험을 수행하였고 형상의 차이에 따라 결과값의 차이가 발생하였다. 따라서 생체모방형 바이오리액터를 개발할 경우에는 형상정보의 차이에 대한 연구가 선행되어야 할 것으로 사료된다.

Keywords

References

  1. Vunjak-Novakovic, G. Meinel, L. Altman, G. and Kaplan, "bioreactor Cultivation of Osteochondral Grafts", Orthodontics and Craniofacial Research, Vol. 8 No. 3, pp. 209-218, 2005. https://doi.org/10.1111/j.1601-6343.2005.00334.x
  2. Z. xizheng, W. Han, H. Daqing, and G. jing, "Direct compression as an appropriately mechanical environment in bone tissue reconstruction in vitro", Medical Hypothess, Vol. 67, pp. 1414-1418, 2006. https://doi.org/10.1016/j.mehy.2006.05.044
  3. Z. Y. hang, S. H Teoh, W. S Chong, T. T Foo, Y. C Chng, "A biaxial rotating bioreactor for the culture of fetal mesenchymal stem cells", Biomaterials Vol. 30, pp. 2694-704, 2009. https://doi.org/10.1016/j.biomaterials.2009.01.028
  4. Peter Reher, El-Noor, "The Stimulation of bone formation in vitro by the rapeutic ultrasound", Vol. 23 No. 8, pp. 1251-1258, 1997. https://doi.org/10.1016/S0301-5629(97)00031-8
  5. M. Bhattacharjee, J. Coburn, M. Centola, S. Murab. A. Barbero, David L. Kaplan, I. Martin, S. Ghosh, "Tissue engineering strategies to study cartilage development, degeneration and regeneration", Drug Deliv. Rev, Vol 16, pp. 1-16, 2014.
  6. E.B. Hunziker, K. Lippuner, M.J.B. Keel, N. Shintani, "An educational review of cartilage repair: precepts & practice myths, & misconceptions progress & prospects", Osteoartihritis and Cartilage, Review, pp. 1-17, 2015.
  7. Johnna S. Temeno, Antonios G. Mikos, "tissue engineering for regeneration of articular cartilage", Biomaterials, Vol 21, pp. 431-440, 2000. https://doi.org/10.1016/S0142-9612(99)00213-6
  8. C. Madeira, A. Santhagunam, Joa.o B. Salgueiro, and Joaquim M.S. Cabral, "Advanced cell therapies for articular cartilage regeneration", Vol 33, No 1, pp. 35-42, 2015. https://doi.org/10.1016/j.tibtech.2014.11.003
  9. Shantanu Patil, "Comparative biomechanical analysis of human and caprine knee articular cartilage", The Knee Vol. 21, pp. 119-125, 2014. https://doi.org/10.1016/j.knee.2013.03.009