DOI QR코드

DOI QR Code

Finite element analysis in static and dynamic behaviors of dental prosthesis

  • Djebbar, N. (Department of Mechanical Engineering, University of Sidi Bel Abbes) ;
  • Serier, B. (Department of Mechanical Engineering, University of Sidi Bel Abbes) ;
  • Bouiadjra, B. Bachir (Department of Mechanical Engineering, University of Sidi Bel Abbes)
  • Received : 2014.11.27
  • Accepted : 2015.04.03
  • Published : 2015.07.10

Abstract

In recent years, implants have gained growing importance in all areas of medicine. The success of the treatment depends on many factors affecting the bone-implant, implant-abutment and abutment-prosthesis interfaces. In this paper, static and dynamic behaviors of the dental prosthesis are investigated. Three-dimensional finite element models of dental prosthesis were constructed. Dynamic loads in 5 sec applied on occlusal surface. Therefore, FEA was selected for use in this study to examine the effect of the static and dynamic loads on the stress distribution for an implant-supported fixed partial denture and supporting bone tissue.

Keywords

References

  1. ABAQUS (2007), http:www.simulia.com, accessed 5 February.
  2. Al Jabbari, Y.S., Fournelle, R., Ziebert, G., Toth, J. and Iacopino, A.M. (2008a), "Mechanical Behavior andfailure analysis of prosthetic retaining screws after long-term use invivo. Part1: characterization of adhesive wear and structure of retaining screws", J. Prosthodont, 17, 80-168.
  3. Al Jabbari, Y.S., Fournelle, R., Ziebert, G., Toth, J. and Iacopino, A.M. (2008b), "Mechanical behavior and failure analysis of prosthetic retaining screws after long-term use invivo. Part 2: metallurgical and micro hardness analysis", J. Prosthodont, 17, 91-181.
  4. Ao, J., Li, T., Liu, Y., Ding, Y., Wu, G., Hu, K. and Kong, L. (2010), "Optimal design of thread height and width on an immediately loaded Cylinder implant: a finite element analysis", Comput. Bio. Med., 40, 681686.
  5. Assungao, W.G., Barao, V.A.R., Delben, J.A., Gomes, E.A. and Garcia, I.R. (2011), "Effect of unilateral misfit on preload of retention screws of implant supported prostheses submitted to mechanical cycling", J. Prosthod. Res., 55, 12-18. https://doi.org/10.1016/j.jpor.2010.05.002
  6. Block, M.S., Kent, J.N. and Guerra, L. (1997), "Implants in dentistry: essentials of endosseous implants for maxillofacial reconstruction", Biomechanics of Dental Implants, 63-71, Philadelphia, USA.
  7. Dittmer, M.P., Dittmer, S., Borchers, L., Kohorst, P. and Stiesch, M. (2011), "Influence of the interface design on the yield force of the implant-abutment Complex before and after cyclic mechanical loading", J. Prosthod. Res., 8, 19-24.
  8. Geng, J., Tan, K. and Liu, G. (2001), "Application of finite element analysis in implant dentistry", J. Prosthet Dent, 85(6), 585-598. https://doi.org/10.1067/mpr.2001.115251
  9. Guan, H., van Staden, R.C., Johnson, N.W. and Loo, Y.C. (2011), "Dynamic modelling and simulation of dental implant insertion process-A finite element study", Finite Elem. Anal. Des., 47, 886-897. https://doi.org/10.1016/j.finel.2011.03.005
  10. Hoyer, S.A., Stanford, C.M., Buranadham, S., Fridrich, T., Wagner, J. and Gratton, D. (2001), "Dynamic fatigue properties of the dental implant-abutment interface: Joint opening in wide-diameter versus standard-diameter hex-type implants", J. Prosthetic Dent., 85, 599-607. https://doi.org/10.1067/mpr.2001.115250
  11. Kayabasi, O., Yuzbasioglu, E. and Erzincanli, F. (2006), "Static, dynamic and fatigue behaviours of dental implant using finite element method", Adv Eng Softw, 37, 58-649.
  12. Koca, O.L., Eskitascioglu, G. and Usumez, A. (2005), "Three dimensional finite element analysis of function al stresses in different bone locations produced by implants placed in the maxillary posterior region of the sinus floor", Journal of Prosthet Dent, 93, 38-44. https://doi.org/10.1016/j.prosdent.2004.10.001
  13. Okumura, N., Stegaroiu, R., Kitamura, E., Kurokawa, K. and Nomura, S. (2010), "Influence of maxillary cortical bone thickness, implant design and implant diameter on stress around implants: a threedimensional finite element analysis", J. Prosthod. Res., 54, 133-142. https://doi.org/10.1016/j.jpor.2009.12.004
  14. Quek, H.C., Tan, K.B. and Nicholls, J.I. (2008), "Load fatigue performance of four implant-abutment interface designs: effect of torque level and implant system", J. OralMaxillof. Implants, 23, 62-253.
  15. Rached, R.N., de Souza, E.M., Dyer, S.R. and Ferracane, J.L. (2011), "Dynamic and static strength of an implant-supported overdenture model reinforced with metal and non-metal strengtheners", J. Prosthetic Dent., 106, 297-304 https://doi.org/10.1016/S0022-3913(11)60134-0
  16. Timoshenko, S. and Young, D.H. (1968), Elements of Strength of Materials, 5th Edition, Florence, Wadsworth.
  17. Van Osterwyck, H., Duyck, J., Vander, S., Vander, P.G., Decoomans, M., Lieven, S., Puers, R. and Naert, L. (1998), "The influence of bone mechanical properties and implant fixation upon bone loading around oral implants", Clinic Oral Implants Res., 9(6), 407-412. https://doi.org/10.1034/j.1600-0501.1996.090606.x
  18. Wang, R.F., Kang, B., Lang, L.A. and Razzoog, M.E. (2009), "The dynamic natures of implant loading", J. Prosthetic Dent., 101, 359-371. https://doi.org/10.1016/S0022-3913(09)60079-2
  19. Zarb, G.A. and Schmitt, A. (1990), "The longitudinal clinical effectiveness of osseointegrated implants", J. ProsthetDent, 64, 94-185.
  20. Zinser, M., Neugebauer, J., Mischkowski, R.A., Karapedian, VE., Kubler, A. and Zoller, J.E. (2004), "Comparison of static and dynamic navigation systems for insertion of dental implants", Int. Congress Series, 1268, 1378, June.

Cited by

  1. Stress Distribution of the Variable Dynamic Loading in the Dental Implant: A Three-Dimensional Finite Element Analysis vol.31, 2017, https://doi.org/10.4028/www.scientific.net/JBBBE.31.44
  2. Parametric Optimization of Dental Implants vol.22, pp.4, 2015, https://doi.org/10.2478/mme-2018-0084
  3. Biomechanical stability of internal bone-level implant: Dependency on hex or non-hex structure vol.74, pp.4, 2020, https://doi.org/10.12989/sem.2020.74.4.567