DOI QR코드

DOI QR Code

Advanced Lane Change Assist System for Automatic Vehicle Control in Merging Sections : An algorithm for Optimal Lane Change Start Point Positioning

고속도로 합류구간 첨단 차로변경 보조 시스템 개발 : 최적 차로변경 시작 지점 Positioning 알고리즘

  • 김진수 (한양대학교 기계공학과) ;
  • 정진한 (한양대학교 미래자동차공학과) ;
  • 유성현 (한양대학교 미래자동차공학과) ;
  • 박장현 (한양대학교 미래자동차공학과) ;
  • 장경영 (한양대학교 기계공학과)
  • 투고 : 2015.03.19
  • 심사 : 2015.06.22
  • 발행 : 2015.06.30

초록

A lane change maneuver which has a high driver cognitive workload and skills sometimes leads to severe traffic accidents. In this study, the Advanced Lane Change Assist System (ALCAS) was developed to assist with the automatic lane changes in merging sections which is mainly based on an automatic control algorithm for detecting an available gap, determining the Optimal Lane Change Start Point (OLCSP) in various traffic conditions, and positioning the merging vehicle at the OLCSP safely by longitudinal automatic controlling. The analysis of lane change behavior and modeling of fundamental lane change feature were performed for determining the default parameters and the boundary conditions of the algorithm. The algorithm was composed of six steps with closed-loop. In order to confirm the algorithm performance, numerical scenario tests were performed in various surrounding vehicles conditions. Moreover, feasibility of the developed system was verified in microscopic traffic simulation(VISSIM 5.3 version). The results showed that merging vehicles using the system had a tendency to find the OLCSP readily and precisely, so improved merging performance was observed when the system was applied. The system is also effective even during increases in vehicle volume of the mainline.

차로변경은 운전자의 숙련된 주변인식 및 운전기술이 요구되어 심각한 교통사고를 야기한다. 그리하여 우리는 불가피한 차로변경이 대두되는 고속도로 합류구간에서 본선으로 합류하는 차량의 차로변경을 보조하는 차량 자동제어 시스템 (ALCAS; Advanced Lane Change Assist System)을 개발한다. 본 연구에서는 ALCAS 중 조향이 수행되기 이전에 최적 차로변경 시작지점(Optimal Lane Change Start Point; OLCSP)을 생성하고 그 지점까지 도달하는 종방향 제어 알고리즘 개발에 초점을 두었다. 이를 위해 우선 고속도로 합류구간의 차로변경 행태를 분석하였고, 실제 차량의 가속도 함수 형태를 통해 차로변경 특징모형(Lane Change Feature Model)을 설계하였다. 그 후 차로변경 수행 단계를 정립하였으며, 이 알고리즘 성능과 타당성을 검증하기 위하여 다양한 주변차량 주행환경에 따른 시나리오 시험을 수행하였다. 또한 개발된 알고리즘의 효과를 미시적 교통류 시뮬레이션 (VISSIM)을 통해 확인하였다. 개발한 알고리즘을 합류차량에 적용한 결과 안정류 상태에서 합류성능이 두드러지게 개선되는 것을 확인하였다. 이 차량 자동제어 시스템은 교통 자동차 분야 융합기술의 일환으로 개발되었으며, 운전자의 부하와 오류를 감소시켜 효율성과 안전성을 향상시킬 뿐만 아니라 교통류의 안정성, 임계용량, 주행 효율성의 증대로 사회비용 감소를 기대할 수 있다.

키워드

참고문헌

  1. Wang, X., T. Miyagi and J. Ying. "A Simulation Model for Traffic Behavior at Merging 35 Sections in Highways", Proceedings of the Second International Conference on Innovative 36 Computing, Information and Control, pp.30-43, 2007.
  2. Rajesh Rajamani, "Vehicle Dynamics and Control", Springer Verlag, second edition, ISBN 978-1461414322, 2012.
  3. Huang, S., Ren, W. and Chan, S.C. "Design and performance evaluation of mixed manual and automated control traffic." IEEE Trans. Syst., Man, Cybern. A, Syst., Humans, vol. 30, no. 6, pp.661-673, 2000.
  4. Schmitt, K. and Isermann, R. "Vehicle state estimation in curved road coordinates for a driver assistance system for overtaking situations", Proceedings of 21st IAVSD Symposium, Stockholm, 2009.
  5. Shladover, Steven E., "Dependence of Cooperative Vehicle System Performance on Market Penetration". In Transportation Research Record: Journal of the Transportation Research Board, No. 2000, Transportation Research Board of the National Academies, Washington, D.C., pp.121-127, 2007.
  6. Jung-Hoon Song, "Design of u-Transportation Communication Systems for Next-Generation ITS Services", Journal of KITS, vol. 5, no. 12, pp.61-72, 2013.
  7. Halati, A., H. Lieu, and S. Walker. "CORSIM-Corridor Traffic Simulation Model", Proc., Conference on Traffic Congestion and Traffic Safety in the 21st Century, pp.570-576, 1997.
  8. Yang, Q., and H. N. Koutsopoulos. "A Microscopic Traffic Simulator for Evaluation of Dynamic Traffic Management Systems", Transportation Research C, vol. 4, pp.113-129, 1996. https://doi.org/10.1016/S0968-090X(96)00006-X
  9. Hidas, P., and K. Behbahanizadeh. "Microscopic Simulation of Lane Changing Under Incident Conditions", Proc., 14th International Symposium on the Theory of Traffic Flow and Transportation, pp.53-69, 1999.
  10. Zhang, Y. "Multiregime Approach for Microscopic Traffic Simulation", Transportation Research Record 1644, TRB, National Research Council, Washington, D.C., pp. 103-115, 1998.
  11. T. Vu, R. Roess "Simulation of a weaving section", Transportation Research Board 2007 Annual Meeting CD-ROM, 2007.
  12. Gipps, P. G. "A Model for the Structure of Lane Changing Decisions", Transportation Research B, vol. 20, pp.403-414, 1986. https://doi.org/10.1016/0191-2615(86)90012-3
  13. Ahmed K. I., "Models of Freeway Lane Changing and Gap Acceptance Behavior", Proc., 13th International Symposium on the Theory of Traffic Flow and Transportation, pp.501-515, 1996.
  14. Ahmed, K. I. "Modeling Drivers' Acceleration and Lane Changing Behavior", Ph.D. dissertation. Department of Civil and Environmenta Engineering, Massachusetts Institute of Technology, Cambridge, 1999.
  15. A. Skabardonis, "Estimating and Validating Models of Microscopic Driver Behavior with Video Data", Technical report, California Partners for Advanced Transit and Highways (PATH), 2005.
  16. A. Kesting, "General Lane-Changing Model MOBIL for Car-Following Models", Transportation Research Record 1999, pp.86-94, 2007.
  17. Sun, D. and A. Kondyli. "Modeling Vehicle Interactions During Lane-Changing Behavior on Arterial Streets", Computer-Aided Civil and Infrastructure Engineering, vol. 25, no. 8, pp.557-571, 2010. https://doi.org/10.1111/j.1467-8667.2010.00679.x
  18. V. Goswami and G. H. Bham, "Gap Acceptance Behavior in Mandatory Lane Changes under Congested and Uncongested Traffic on a Multi-lane Freeway", Transportation Research Board 2007 Annual Meeting CD-ROM, 2007.
  19. Schakel, W.J. "An Integrated Lane Change Model with 27 Relaxation and Synchronization", Transportation Research Board 2012 Annual Meeting. Washionton. D. C. 2012.
  20. Vahidi, A. and Eskandarian, A. "Research advances in intelligent collision avoidance and adaptive cruise control", IEEE Trans. Intell. Transp. Syst., vol. 4, no. 3, pp.143-153, 2003. https://doi.org/10.1109/TITS.2003.821292
  21. US Department of Transportation, NGSIM-Next Generation Simulation, http://www.ngsim.fhwa.dot.gov-Access date, 2007.