References
- Sun, Y., and Cheng. J., Hydrolysis of lignocellulosic materials for ethanol production: a review, Bioresource Technology 83:1-11 (2002). https://doi.org/10.1016/S0960-8524(01)00212-7
- Yoon, S.Y., and Shin, S.-J., Impact of alkali pretreatment to enzymatic hydrolysis of cork oak (Quercus Variabilis), Journal of Korea TAPPI 46(6):1-7 (2014).
- Cho, N.S., Autohydrolysis and enzymatic saccharification of lignocellulosic materials (I) -the effect of autohydrolysis on wood component fractionation and its enzymatic hydrolysis, Journal of Korea TAPPI 21(3):24-34 (1989).
- Alvira, P., Tomas-Pejo, E., Ballesteros, M. and Negro, M.J., Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review, Bioresource Technology 101:4851-5861 (2010). https://doi.org/10.1016/j.biortech.2009.11.093
- Li, C., Knierim, B., Manisseri, C., Arora, R., Scheller, H.V., Auer, M., Vogel, K.P., Simmons, B.A., and Singh, S., Comparison of dilute acid and ionic liquid pretreatment of switchgrass: Biomass recalcitrance, delignification and enzymatic saccharification, Bioresource Technology 101(13):4900-4906 (2010). https://doi.org/10.1016/j.biortech.2009.10.066
- Olz, Z., Larsson, K., Adler, L., and Gustafsson, L., Energy flux and osmoregulation of Saccharomyces cerevisiae grown in chemostats under NaCl stress, Journal of Bacteriology 175(8):2205-2213 (1993).
- Casey, E., Mosier N.S., Adamec, J., Stockdale, Z., Ho, J., and Sedlak, M., Effect of salts on the co-fermentation of glucose and xylose by a genetically engineered strain of Saccharomyces cerevisiae, FEMS Yeast Research 10:385-393 (2010). https://doi.org/10.1111/j.1567-1364.2010.00623.x
- Aksu, Z., and Donmez, G., The use of molasses in copper(II) containing waste waters: effects on growth and copper(II) bioaccumulation properties of Kluyveromyces marxianus, Process Biochemistry 36(5):451-458 (2000). https://doi.org/10.1016/S0032-9592(00)00234-X
- Lee, H., Cho, D.H, Kim YH, Shin, S.-J., Kim, .S.B, Han S.O., Lee, J., Kim SW, and Park C., Tolerance of Sacchromyces cerevisiae K35 to lignocellulose derived inhibitory compounds, Biotechnology and Bioprocess Engineering 16:755-760 (2011). https://doi.org/10.1007/s12257-010-0474-4
- Torija, M.J., Rozes, N., Poblet, M., Gulilamon, J.M., and Mas, A., Effects of fermentation temperature on the strain population of Saccharomyces cerevisiae, International Journal of Food Microbiology 80:47-53 (2003). https://doi.org/10.1016/S0168-1605(02)00144-7
- Aldiguier, A.S., Alfenore, S., Cameleyre, X., Goma, G., Uribelarrea, J.L., Guillouet, S.E., and Molina-Jouve. C., Synergistic temperature and ethanol effect on Saccharomyces cerevisiae dynamic behaviour in ethanol bio-fuel production, Bioprocess and Biosystems Engineering 26(4):217-222 (2004). https://doi.org/10.1007/s00449-004-0352-6
- Ballesteros, I., Ballesteros, M., Cabanas, J., Carrasco, J., Martin, C., Negro, M.J., Saez, F and Saez, R., Selection of thermotolerant yeasts for simultaneous saccharification and fermentation (SSF) of cellulose to ethanol, Applied Biochemistry and Biotechnology 28-29(1):307-315 (1991). https://doi.org/10.1007/BF02922610
- Karimi, K., Emtiazi, G., and Taherzadeh, M.J., Ethanol production from dilute-acid pretreated rice straw by simultaneous saccharification and fermentation with Mucor indicus, Rhizopus oryzae, and Saccharomyces cerevisiae, Enzyme and Microbial Technology 40(1):138-144 (2006). https://doi.org/10.1016/j.enzmictec.2005.10.046
- Spindler, D.D., Wyman, C.E., Mohagheghi, A., and Grohmann, K., Thermotolerant yeast for simultaneous saccharification and fermentation of cellulose to ethanol, Applied Biochemistry and Biotechnology 17(1-3): 279-193 (1988). https://doi.org/10.1007/BF02779163
- Song, W.-Y., Seung, H.-A., and Shin, S.-J., Impact of sodium or potassium cations in culture medium to ethanol fermentation by Saccharomyces cerevisiae, Journal of Korea TAPPI 47(1):17-23 (2015).