DOI QR코드

DOI QR Code

Characteristics of Silane Treated Graphene Filled Nanocomposites Exposed to Low Earth Orbit Space Environment

저궤도 우주환경하의 실란처리된 그래핀 첨가 나노 복합재료의 물성특성

  • Noh, Jae-Young (Hanwha Corporation R&D Center) ;
  • Jin, Seung-Bo (Department of Launch Vehicle System Integration, Korea Aerospace Research Institute) ;
  • Kim, Chun-Gon (Dept. of Aerospace Engineering, Korea Advanced Institute of Science and Technology)
  • Received : 2015.03.30
  • Accepted : 2015.06.30
  • Published : 2015.06.30

Abstract

This study investigates the property of graphene filled polymer nanocomposites in LEO(Low Earth orbit) environment conditions. In order to improve compatibility with polymer matrices and resistance of carbon material against AO(Atomic oxygen) attack, silanization of graphene oxide with organosilane was carried out. The corresponding moieties were characterized through X-ray photoelectron spectroscopy (XPS). Graphene oxide filled nanocomposites were prepared using solution based processing methods. The sets of specimen series were tested in an accelerated LEO simulated space environment facility. Graphene oxide and silane treated graphene oxide reinforced nanocomposites were compared with neat epoxy. The comparison revealed that the silane treated graphene filled polymer composite shows inherent resistance against atomic oxygen attack while the lack of silane treatment resulted in a reduction in performance.

이 논문은 저궤도 우주환경하에서 그래핀 충진 고분자 나노복합재료에 대한 물성 변화를 고찰하였다. 고분자 기지재와의 적합성과 원자산소 공격에 대한 탄소재료의 저항성을 향상시키기 위해 유기실란으로 그래핀 옥사이드의 표면을 실란처리를 수행하였다. 실란이 그래핀 옥사이드 표면에 결합여부를 XPS 장비를 사용하여 분석하였다. 실란 처리된 그래핀 옥사이드와 실란 처리하지 않은 그래핀 옥사이드를 강화재로 사용한 나노복합재료를 제작하여 순수 에폭시와 인장물성을 비교하였으며, 모사된 저궤도 우주환경에서의 물성 변화를 관찰하였다. 그 결과 실란처리를 하여 그래핀 나노 복합재료를 제작할 경우 우주환경요소 중 원자 산소에 저항성을 가지는 것을 확인하였으며, 실란처리를 하지 않은 경우에는 오히려 성능이 감소함을 확인할 수 있었다.

Keywords

References

  1. Banks, B.A., de Groh, K.K., and Miller, S.K., Low Earth Orbital Atomic Oxygen Interactions with Spacecraft Materials, NASA technical Memorandum 2004-213400, 2004.
  2. Edward, M.S., Space Environment Effects on Spacecraft: LEO Materials Selection Guide, Part I, 1995.
  3. Louis, A.T. and Stein, B.A., NASA/SDIO Space Environmental Effects on Materials Workshop Part I, NASA Conference Publication 3035, 1988.
  4. Louis, A.T. and Stein, B.A., NASA/SDIO Space Environmental Effects on Materials Workshop Part II, NASA Conference Publication 3035, 1988.
  5. Reddy, M.R., Review Effect of Low Earth Orbit Atomic Oxygen on Spacecraft Materials, 1995, pp. 281-307.
  6. Grossman, E. and Gouzman, I., "Space Environment Effects on Polymers in Low Earth Orbit", Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 208, 2003, pp. 48-57. https://doi.org/10.1016/S0168-583X(03)00640-2
  7. Packirisamy, S., Schwam, D., and Litt, M.H., "Review Atomic Oxygen Resistant Coatings for Low Earth Orbit Space Structures", Journal of Materials Science, Vol. 30, 1995, pp. 308-320. https://doi.org/10.1007/BF00354390
  8. Kleiman, J., Iskanderova, Z., Perez, F.J., and Tennyson, R., "Protective Coatings for LEO Environments in Spacecraft Applications," Surface and Coating Technology; Vol. 76-77, 1995, pp. 827-834. https://doi.org/10.1016/0257-8972(95)02497-2
  9. Cooper, R., Upadhyaya, H.P., Minton, T.K., Berman, M.R., Du, X., and George, S.M., "Protection of Polymer from Atomicoxygen Erosion Using $Al_2O_3$ Atomic Layer Deposition Coatings", Thin Solid Films, Vol. 516, 2008, pp. 4036-4039. https://doi.org/10.1016/j.tsf.2007.07.150
  10. Packirisamy, S., Schwam, D., and Litt, M.H., "Atomic Oxygen Resistant Coatings for Low Earth Orbit Space Structures., Journal of Materials Science, Vol. 30, 1995, pp. 308-320. https://doi.org/10.1007/BF00354390
  11. Dworak, D.P., Banks, B.A.,Karniotis, C.A., and Soucek, M.D., "Evaluation of Protective Silicone/Siloxane Coatings in Simulated Low-Earth-Orbit Environment," Journal of Spacecraft and Rockets, Vol. 43(2), 2006, pp. 393-401. https://doi.org/10.2514/1.15787
  12. Brunsvold, A.L., Minton, T.K., Gouzman, I., Grossman, E., and Gonzalez, R.I., "An Investigation of the Resistance of POSS polyimide to Atomic Oxygen Attack," ESA 2003, SP-540, pp. 153-158.
  13. Bob Piascik, Johon Vickers, Materials, Structures, Mechanical Systems, and Manufacturing Roadmap, NASA, 2012.
  14. Jin, S.B., Son, G.S., Kim, Y.H., and Kim, C.G., "Enhanced Durability of Silanized Multi-walled Carbon Nanotube/epoxy Nanocomposites under Simulated Low Earth Orbit Space Environment," Composites Science and Technology, Vol. 87, 2013, pp. 224.231.
  15. Kuilla, T., Bhadra, S., Yao, D., Kim, N.H., Bose, S., and Lee, J.H., "Recent Advances in Graphene Based Polymer Composites," Progress in Polymer Science, Vol. 35, No. 11, 2010, pp. 1350-1375. https://doi.org/10.1016/j.progpolymsci.2010.07.005
  16. Liang, J., Huang, Y., Zhang, L., Wang, Y., Ma, Y., and Guo, T., "Molecular-Level Dispersion of Graphene into Poly(vinyl alcohol) and Effective Reinforcement of their Nanocomposites", Advanced Functional Materials, Vol. 19, No. 14, 2009, pp. 2297-2302. https://doi.org/10.1002/adfm.200801776
  17. Kuila, T., Bose, S., Mishra, A.K., Khanra, P., Kim, H.H., Lee, J.H., "Chemical Functionalization of Graphene and Its Applications," Progress in Materials Science, Vol. 57, Issue 7, 2012, pp. 1061-1105. https://doi.org/10.1016/j.pmatsci.2012.03.002
  18. Terrones, M., Martin, O., Gonzalez, M., Pozuelo, J., Serrano, B., Cabanelas, J.C., Vega-Diaz, S.M., and Baselga, J., "Interphases in Graphene Polymer-based Nanocomposites," Advanced Materials, Vol. 23, 2011, pp. 5302-5310. https://doi.org/10.1002/adma.201102036
  19. Wang, X., Xing, W., Zhang, P., Song, L., and Yang, H., "Covalent Functionalization of Graphene with Organosilane and Its Use as a Reinforcement in Epoxy Composites," Composites Science and Technology, Vol. 72, No. 6, 2012, pp. 737-743. https://doi.org/10.1016/j.compscitech.2012.01.027

Cited by

  1. Reactive Molecular Simulation of the Damage Mitigation Efficacy of POSS-, Graphene-, and Carbon Nanotube-Loaded Polyimide Coatings Exposed to Atomic Oxygen Bombardment vol.9, pp.14, 2017, https://doi.org/10.1021/acsami.7b02032
  2. OG POSS의 첨가가 DGEBA/DDM의 열적, 기계적 물성에 미치는 영향 vol.30, pp.6, 2015, https://doi.org/10.7234/composres.2017.30.6.379
  3. 에폭시-실리카 나노 복합소재의 열화 특성 및 거동 분석 vol.33, pp.5, 2015, https://doi.org/10.7234/composres.2020.33.5.268